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Recap

@ So far, what do we know about regression model?

o MLR.1: y =080+ Bix1+ -+ Buxk + u

e MLR.2: random sampling from population

@ MLR.3: no perfect collinearity in sample

o MLR.4: E(ulx1,...,xk) = E(u) = 0 (exogenous regressor)

o MLR.5: Var(u|xy,...,xx) = Var(u) = 0? (homoskedasticity)



@ (1) Algebraic properties of OLS estimators for any sample, regression
anatomy formula, goodness-of-fit R?, and interpretation of OLS
regression line

@ (2) Unbiasedness of OLS under MLR.1-4 and omitted variable bias
(failure of MLR.4)

@ (3) Formula for Var(Bj|X) under MLR.1-5






Testing hypotheses on f3;

@ We now want to test hypotheses about ;. Hypothesise that §;
takes certain value, then use data to determine whether to reject the
hypothesis or not

@ For example, based on ATTEND.dta
final = By + Bimissed + BopriGPA + B3ACT 4+ u

where ACT is achievement test score. Null hypothesis that missing

lecture has no effect on final exam performance (after controlling for
prior GPA and ACT score) is

H()ZBl:O



What we know about Bj

@ To test hypotheses about 3;, we need to know more than just mean
and variance of 3;

@ Under MLR.1-4, we can compute expected value as
E(B) =B
@ Under MLR.1-5, we know variance is

0.2

J

and 62 = SSR/(n — k — 1) is an unbiased estimator of o2



What we want: Sampling distribution of Bj

@ Hypothesis testing requires entire sampling distribution of BAJ-. Even
under MLR.1-5, sample distributions can be virtually anything

o Write .
Bi=Bi+ Y wyuj
i=1
where w;'s are functions of X

o Conditional on X, the distribution of /3; is determined by that of
(u1,...,un)



Assumption MLR.6

e Assumption MLR.6 (Normality)

Error term v is independent of (xi,...,xx) and is normally
distributed with mean zero and variance o2

u ~ Normal(0, 0?)
e MLR.6 implies MLR.4: E(u|x1,...,xxk) = E(u) =0
e Also MLR.6 implies MLR.5: Var(u|xy,...,xx) = Var(u) = o2

@ Now MLR.6 imposes full independence between v and (x, ..., xk)
(not just mean and variance independence)

@ By MLR.6, we now impose very specific distributional assumption for
u: the familiar bell-shaped curve



Your turn

@ Suppose

z ~ Normal(E(z), Var(z))
for E(z) #0

@ Which is true?
o A 25~ Normal(0,1)
e B: % ~ Norma/(07 1)
o C

Var (2) Norma/(o, 1)




Important fact about normal random variables

@ Linear combination of normal random variables is also normally
distributed

@ Because u;'s are independent and identically distributed (called iid) as
Normal(0,02) and 3; = B; + 7y wjju;, we have

BJ\X ~ Normal (Bj, Var(Bj|X))

where X are data for all regressors and we already know the formula
for Var(B;|X)
(o e ——
Var(B;|X) =
TS )



Theorem: Normal sampling distribution

@ Under Assumptions MLR.1-6

B;|X ~ Normal (ﬁj, Var(Bj|X))

and so .
M ~ Normal(0, 1)
sd(3)

@ The second result follows from property of normal distribution: if
W ~ Normal, then a + bW ~ Normal for constants a and b



@ Under MLR.1-5, standardized random variable

A

B — B;

~

Sd(,@j)

always has zero mean and variance one. Under MLR.6, it is also
normally distributed

@ Notice that second result holds even when we do not condition on
X



14



Obtaining a test statistic

@ We cannot directly use the result

BB Normal(0, 1)
sd ()

to test hypotheses about 3; because sd(Bj) depends on unknown

o =/ Var(u)

@ So replace o with & (i.e. replace sd(3;) with standard error se(f3;))



Theorem: t distribution for standardised estimator

@ Under Assumptions MLR. 1-6

3. — B
Lt k1= tar

se(5))

@ We will not prove this as the argument is somewhat involved

@ Due to replacement of o with &, the distribution changes from
standard normal to t distribution



t distribution

t distribution also has bell shape but is more spread out than
Normal(0, 1)

E(tdf) = 0ifdf >1

df

o If df =10, then Var(tgr) = 1.25 (25% larger than variance of
Normal(0, 1))

o If df =120, then Var(tgr) ~ 1.017 (only 1.7% larger)

As df — o0

tar — Normal(O, 1)



Graph of N(0,1) and ts
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t statistic

@ We use result on t distribution to test null hypothesis that x; has no
partial effect on y

Ho:3;=0
o To test Hp : j =0, we use t statistic (or t ratio)

~

t, = 2
i se(B))

@ We measure how far j3; is from zero relative to its standard error

@ Because se(ﬂj) > 0, ts has same sign as BJ To test Hp : 3; =0, we
need alternative hypothe5|s



Testing against one-sided alternatives

@ First consider the alternative
Hy: B3>0
which means the null is effectively
Ho:B; <0
o If we reject 3; = 0 then reject any 3; < 0 too

@ We often just state Hp : 3; = 0 and act like we do not care about
negative values



o If Bj < 0, it provides no evidence against Hp in favor of Hy : 3; >0

5 L . B
e If B8; > 0, the question is: How big does tﬁj <) have to be to

conclude Hy is not a credible hypothesis?



Traditional approach to hypothesis testing

@ (1) Choose null hypothesis Hg : 3; =0 (or Hg : 3; < 0)
@ (2) Choose alternative hypothesis Hy : 3; > 0

@ (3) Choose significance level for the test. That is, probability of
rejecting Ho when it is in fact true (Type | Error). Suppose we use
5%, so probability of committing Type | error is .05

@ (4) Choose critical value ¢ so that rejection rule
tBj >cC

leads to 5% level test



How to get critical value

@ Key: Under the null hypothesis Hy : 5; =0
tgj ~ th_k—1 = tgr

@ Use this to obtain critical value ¢

@ Suppose df = 28 and 5% significance level. Critical value is
¢ = 1.701 (from Table G.2)

@ Following picture shows how to find ¢ for one-tailed test



Area = .05

/
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Rejection rule

@ So, with df = 28, rejection rule for Hp : 3; = 0 against Hy : 3; > 0,
at 5% level, is

tBj > 1.701

We need t statistic greater than 1.701 to conclude there is enough
evidence against Hp

o If ty < 1.701, we fail to reject Hy against H; at 5% significance level
J



Different significance level

@ Suppose df = 28, but we want to carry out test at different
significance level (often 10% or 1% level)

cCio = 1.313
cos = 1701
colr — 2.467

o If we want to reduce probability of Type | error, we must increase
critical value (so we reject the null less often)

o If we reject at, say, 1% level, then we must also reject at any larger
level

e If we fail to reject at, say, 10% level (i.e. tg < 1.313), then we will
J
fail to reject at any smaller level



@ With large sample sizes, we can use critical values from standard
normal distribution. These are df = co entry in Table G.2

ci0o = 1.282
Cos = 1.645
Colr = 2.326

which we can round to 1.28, 1.65, and 2.33, respectively. The value
1.65 is especially common for one-tailed test



Example: Does ACT score help to predict college GPA
(GPAl.dta)

@ Model: colGPA = By + BrsgpahsGPA + BacTACT 4+ u
Null hypothesis is Hy : BacT =0

. reg colGPA hsGPA ACT

Source SS df MS Number of obs = 141
F( 2, 138) = 14.78

Model 3.42365506 2 1.71182753 Prob > F = 0.0000
Residual 15.9824444 138 .115814814 R-squared = 0.1764
Adj R-squared = 0.1645

Total 19.4060994 140 .138614996 Root MSE = .34032
colGPA Coef.  Std. Err. t P>|t| [95% Conf. Intervall
hsGPA .4534559  .0958129 4.73 0.000 .2640047 .6429071
ACT .009426 .0107772 0.87 0.383 -.0118838 .0307358
_cons 1.286328  .3408221 3.77 0.000 .612419 1.960237




From output, /S’ACT = .0094 and tacT = .87. Even at 10% level
(c = 1.28), we cannot reject Hp against Hy : BacT >0

Because we fail to reject Hp : Sact = 0, we say that “BAACT is
statistically insignificant at 10% level against one-sided alternative”

Note that estimated effect of ACT is also small. Three more points
(slightly more than one standard deviation) only predicts
.0094(3) ~ .028 increase in colGPA

By contrast, @,SGPA = .453 is large in practical sense and
thsgpa = 4.73 is very large. So “Brsgpa is statistically significant” at
very small significance levels



Your turn

@ Which of the following can cause the usual t test above invalid?
(a) Heteroskedasticity

(b) Correlation coefficient of .95 between two regressors

(c) Omitting an important variable

A: All of them can invalidate
B: Only (a) can invalidate

C: Only (c) can invalidate

D: Two of them can invalidate



Again, Your turn

@ What is a consequence of using the invalid t test with 5% significance
level, say?

A: Critical value is too large

B: Critical value is too small

C: 5% significance level is wrong

D: Conclusion (reject or not) is always wrong



Negative one-sided alternative

@ For negative one-sided alternative
Hy - ﬂj <0

we must see significantly negative value for t statistic to reject
Ho : B; = 0 in favor of H; : 5; <0

@ So the rejection rule is
tBj < —cC
where ¢ is chosen in the same way as in positive case

e With df = 18 and 5% level, critical value is ¢ = —1.734, so rejection
rule is

tBj < —1.734
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Testing against two-sided alternatives

@ Sometimes we do not know ahead of time whether a variable
definitely has positive or negative effect

@ Even in the example
final = By + Bimissed + BopriGPA 4+ B3ACT 4+ u

it is conceivable that missing class helps final exam performance
(extra time is used for studying, say)

@ In this case, null and alternative are

Ho : B8=0
Hy : Bi#0



Rejection rule

o Now we reject if Bj is sufficiently large in magnitude either positive or
negative

@ We again use t statistic ty = , but now rejection rule is
J

/BAJ;
se(3)

|t§j| > C

This results in two-tailed test and critical values are given by Table
G.2

For example, if df =25 and 5% level, two-tailed ¢ is 2.06 (97.5-th
percentile in ty5 distribution)

@ On the other hand, one-tailed ¢ is 1.71 (95-th percentile in tp5
distribution)
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Example: Factors affecting math pass rates (MEAP93.dta)

@ Regress from mathl0 on Inchprg, Isalary, enroll

. des math1@ lnchprg lsalary enroll

storage display value
variable name type format label variable label
mathlo float %9.09g perc studs passing MEAP math
nchprg float %9.0g perc of studs in sch lnch prog
1salary float %9.09g log(salary)
enroll int %9.0g school enrollment

@ A priori, we might expect Inchprg to has negative effect (it is
essentially school-level poverty rate) and /salary to has positive effect.
But we can still test against two-sided alternative to avoid specifying
alternative ahead of time. enroll is clearly ambiguous

@ Since n = 408, we use standard normal critical values: c19 = 1.65,
Cos = 1.96, and Co1l1 = 2.58



. reg mathl® lnchprg lsalary enroll

Source SS df MS Number of obs = 408
F( 3, 404) = 29.60

Model 8075.34004 3 2691.78001 Prob > F = 0.0000
Residual 36741.8404 404 90.9451496 R-squared = 0.1802
Adj R-squared = 0.1741

Total 44817.1805 407 110.115923 Root MSE = 9.5365
math10 Coef.  Std. Err. t P>|t| [95% Conf. Intervall
nchprg -.2878203  .0380285 -7.57 0.000 -.3625787 -.2130618
lsalary 7.969246 3.75663 2.12 0.034 .5842628 15.35423
enroll -.0001741 .0001991 -0.87 0.382 -.0005656 .0002173
_cons -50.69248 39.03804 -1.30 0.195 -127.4355 26.05057




o Coefficients of Inchprg and Isalary have anticipated signs. So we
easily reject Ho : Binchprg = 0 against Hy : Binchprg 7 0. Also we reject
Ho : Bisalary = 0 against Hi : Bisatary # 0 at 5% level, but not for 1%
level.

e enroll is different. |tenron| = 0.87 < 1.65, so we fail to reject Hp at
even 10% level



Your turn

@ Suppose you do not reject Hp : 3; = 0 against two-sided alternative
Hy : B # 0 at the 5 % significance level. Based on this and Bj >0,

can we conclude about one-sided test for Ho : 3; = 0 against
Hy : 8; > 0 at 5% level?

o A: We do not reject Ho
e B: We reject Hy

e C: Not enough information to conclude



Testing other hypotheses about f;

@ Testing the null Hp : 3; = 0 is by far most common. That is why
Stata automatically reports t statistic for this hypothesis

@ It is critical to remember that

is only for Ho : 3; =0



e What if we want to test different null value? For example, in
constant-elasticity consumption function

log(cons) = Po + B1 log(inc) + Pafamsize + Pzpareduc + u

we might want to test
HO : Bl =1

i.e. income elasticity is one (we are pretty sure that 31 > 0)



Testing for Hy : 5; = a;

@ More generally, suppose the null is
HO : ﬁj = aj

where we specify the value a; (usually zero but in above example
aj=1)
d

@ It is easy to extend t statistic

A

_Bi—a
se( )

t

@ This t statistic measures how far our estimate Bj is from the
hypothesized value a; relative to se(f;)



General expression for t test

@ General expression for t test is

estimate — hypothesized value
standard error

@ Alternative can be one-sided or two-sided

@ We choose critical values in exactly same way as before



Example: Crime and enrollment on college campuses
(CAMPUS.dta)

@ Bivariate regression

log(crime) = o+ B1log(enroll) + u

Ho @ p1=1
H = p[fi>1
. des crime enroll
storage display value
variable name type format label variable label
crime int %9.09 total campus crimes

enroll float %9.09g total enrollment



. reg lcrime lenroll

Source SS df MS Number of obs = 97
F( 1, 95) = 133.79

Model 107.083654 1 107.083654 Prob > F = 0.0000
Residual 76.0358244 95 .800377098 R-squared = 0.5848
Adj R-squared = 0.5804

Total 183.119479 96 1.90749457 Root MSE = .89464
lcrime Coef.  Std. Err. t P>|t| [95% Conf. Intervall
lenroll 1.26976 .109776 11.57 0.000 1.051827 1.487693
_cons -6.63137 1.03354 -6.42 0.000 -8.683206 -4.579533

o We get Bl = 1.27. So 1% increase in enrollment is estimated to
increase crime by 1.27% (so more than 1%). Is this estimate
statistically greater than one?



@ Although we cannot pull t statistic from output, we can compute it

by hand

(1.270 - 1)
=~ 7 ~24
t .110 >

@ We have df =97 — 2 = 95. So use df = 120 entry in Table G.2.
Since cg1 = 2.36, we reject at 1% level

@ Alternatively, we can let Stata do the work using lincom (“linear
combination” command)



Computing p-values for t tests

@ In traditional approach for testing, we choose significance level ahead
of time. This can be cumbersome

@ Plus, it can hide some information. Even if we reject at 5% level with
cos = 1.645, the t statistic of 2 and 4 might convey different
information

@ Instead of fixing level ahead of time, it is better to answer the
following question: Given the observed value of t statistic, what is
the smallest significance level at which we can reject Hy?

@ Such smallest level is known as p-value. It allows us to carry out test
at any level



@ One way to think about p-values is that it uses the observed
statistic as critical value, and then finds significance level of the
test using that critical value

@ It is most common to report p-values for two-sided alternatives (this
is what Stata does)

@ For t testing against two-sided alternative
p-value = P(|T| > |t|)

where t is the value of t statistic and T is a random variable with tyf
distribution



Interpretation of p-value

@ Perhaps the best way to think about p-values: it is probability of
observing the statistic as extreme as we did if Hj is true

@ So smaller p-values provide more are evidence against the null. For
example, if p-value = .50, then there is 50% chance of observing t as
large as we did (in absolute value). This is not enough evidence
against Hy

o If p-value = .001, then the chance of seeing t statistic as extreme as
we did is .1%. We can conclude that we got very rare sample or that
the null hypothesis is highly unlikely



@ From
p-value = P(|T| > |t|)

we see that as |t| increases p-value decreases. Large absolute t
statistics are associated with small p-values

@ Suppose df = 40 and, from our data, we obtain t = 1.85 or
t =—1.85. Then

p-value = P(|T| > 1.85) = 2P(T > 1.85) = 2(.0359) = .0718

where T ~ ty9. Finding actual number requires Stata



area = .0359

area = .0359

/
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1.85
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Test by p-value

@ Given p-value, we can carry out test at any significance level. If « is
chosen level, then
Reject Hp if p-value < «

@ For example, in previous example we got p-value = .0718. This
means we reject Hg at 10% level but not 5% level. We reject at 8%
but not at 7%

@ Knowing p-value = .0718 is clearly much better than just saying I fail
to reject at 5% level”



Computing p-values for one-sided alternatives

@ In Stata, two-sided p-values for Hp : 3; = 0 are given in the column
labeled "P>|t|"

@ With caveat, one sided p-value is given by

two-sided p-value
2

one-sided p-value =

o We only want the area in one tail, not two tails

@ The caveat is: estimated coefficient should be in the direction of the
alternative, otherwise one-sided p-value would be above .50



Example: Factors affecting NBA salaries (NBASAL.dta)

. des wage games avgmin points rebounds assists

storage display value
variable name type format label variable label
wage float %9.09g annual salary, thousands $
games byte %9.0g average games per year
avgmin float %9.0g minutes per game
points float %9.0g points per game
rebounds float %9.09g rebounds per game
assists float %9.0g assists per game

. sum wage games avgmin points rebounds assists

Variable Obs Mean Std. Dev. Min Max
wage 269 1423.828 999,7741 150 5740
games 269 65.72491 18.85111 3 82
avgmin 269 23.97925 9.731177 2.888889  43.08537
points 269 10.21041 5.900667 1.2 29.8
rebounds 269 4.401115 2.892573 .5 17.3
assists 269 2.408922 2.092986 0 12.6




. reg lwage games avgmin points rebounds assists

Source SS df MS

Model 90.2698185 5 18.0539637
Residual 117.918945 263 .448361006

Total 208.188763 268 .776823743

Number of obs = 269
F( 5, 263) = 40.27
Prob > F = 0.0000
R-squared = 0.4336
Adj R-squared = 0.4228
Root MSE =  .6696

wage Coef.  Std. Err. t P>|t| [95% Conf. Intervall
games .0004132 .002682 0.15 0.878 -.0048679 .0056942
avgmin .0302278 .0130868 2.31 0.022 .0044597 .055996
points .0363734 .0150945 2.41 0.017 .0066519 .0660949
rebounds .0406795 .0229455 1.77 e.077 -.0045007 .0858597
assists .0003665 .0314393 0.01 0.991 -.0615382 .0622712
_cons 5.648996 .1559075 36.23 0.000 5.34201 5.955982




Except for intercept, none of variables is statistically significant at 1%
level against two-sided alternative. The closest is points with p-value
= .017 (One-sided p-value is .017/2 = .0085 < .01, so it is significant
at 1% level against positive one-sided alternative)

avgmin is statistically significant at 5% level because p-value
=.022 < .05

rebounds is statistically significant at 10% level (against two-sided
alternative) because p-value = .077 < .10, but not at 5% level. But
one-sided p-value is .077/2 = .0385

Both games and assists have very small t statistics, which lead to
p-values close to one (for example, for assists, p-value = .991). These
variables are statistically insignificant



Practical versus statistical significance

@ t testing is purely about statistical significance. It does not directly
speak to the issue of whether a variable has practically or
economically large effect

e Practical or economic significance depends on the size (and sign)
of 51'
@ Statistical significance depends on ts.
J

@ It is possible that although the estimate Bj indicates practically large
effect, the estimate is so imprecise that it is statistically insignificant.
This is especially an issue with small data sets

@ Even more importantly, it is possible to get estimates that are
statistically significant but are not practically large. This can happen
with very large data sets
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Confidence interval

@ Rather than just testing hypotheses about parameters it is also useful
to construct confidence intervals (Cls, also known as interval
estimators)

@ Instead of so-called looking at a “point estimator” as we have done so
far, we now consider a range of values as our estimator for an
unknown population parameter. It takes into account the uncertainty
associated with a point estimator

@ We will only consider Cls of the form
B+ c-se(f))

where ¢ > 0 is chosen based on confidence level



@ We will use 95% confidence level, in which case ¢ comes from 97.5
percentile in tgr distribution. In other words, ¢ is 5% critical value
against two-sided alternative

e Stata automatically reports at 95% CI for each parameter, based on t
distribution using appropriate df



Example (NBASAL.dta)

. reg lwage games avgmin points rebounds assists

Source SS df MS Number of obs = 269
F( 5, 263) = 40.27

Model 90.2698185 5 18.0539637 Prob > F = 0.0000
Residual 117.918945 263 .448361006 R-squared = 0.4336
Adj R-squared = 0.4228

Total 208.188763 268 .776823743 Root MSE =  .6696
lwage Coef.  Std. Err. t P>|t]| [95% Conf. Intervall
games 0004132 .002682 0.15 0.878 -.0048679 .0056942
avgmin .0302278  .0130868 2.31 0.022 .0044597 .055996
points .0363734  .0150945 2.41 0.017 .0066519 .0660949
rebounds .0406795 .0229455 1.77 0.077 -.0045007 .0858597
assists .0003665  .0314393 0.01 0.991 -.0615382 .0622712
_cons 5.648996  .1559075 36.23 0.000 5.34201 5.955982




@ Notice how three estimates that are not statistically different from
zero at 5% level — games, rebounds, and assists — all have 95% Cls
that include zero. For example, 95% Cl for Brepounds is

[—.0045, .0859)]
@ By contrast, 95% Cl for Bpoints is

[.0067,.0661]

which excludes zero



Interpretation of Cl

@ Properly interpreting Cl is a bit tricky. We often see statements like
“there is 95% chance that SBpoints is in interval [.0067,.0661]." This is
incorrect. Bpoints is some fixed value, and it either is or is not in the
interval

@ Correct way to interpret Cl is to remember that the endpoints
pj = c - se(fj) change with each sample (i.e. endpoints are random
outcomes)

@ What 95% Cl means is that in hypothetically repeated random
sampling, the interval we compute using the rule BJ +c- se(ﬁj)
will include the value 3; in 95% of cases. But for a particular
sample we will never know whether f3; is in the interval or not



Cl and hypothesis testing

e By 95% Cl for §;, we can test any null value against two-sided
alternative at 5% level. Consider

HO . ﬁj:aj
H1 . /Bj;&aj

e (1) If ajisin 95% CI, then we fail to reject Hp at 5% level

@ (2) If aj is not in 95% CI then we reject Hp in favor of H; at 5% level



Example (WAGE?2.dta)

. reg lwage educ IQ exper meduc

Source SS df MS Number of obs = 857
F( 4, 852) = 46.89

Model 26.949693 4 6.73742325 Prob > F = 0.0000
Residual 122.411347 852 .14367529 R-squared = 0.1804
Adj R-squared = 0.1766

Total 149.36104 856 .174487197 Root MSE = .37905
lwage Coef.  Std. Err. t P>|t]| [95% Conf. Intervall
educ .0547499  .0077049 7.11 0.000 .039627 .0698727
IQ .0054188  .0010253 5.28 0.000 .0034064 .0074312
exper .0222246  .0034192 6.50 0.000 .0155134 .0289357
meduc .0126417  .0049645 2.55 0.011 .0028977 .0223857
_cons 5.108905 .1264354 40.41 0.000 4.860744 5.357066




@ 95% Cl for (¢ is about [.0034,.0074]. So we can reject Hp : 310 =0
against two-sided alternative at 5% level. We cannot reject
Ho : Big = .005 (although it is close)

e We can reject return to schooling of 3.5% as being too low, but also
7% is too high

@ Just as with hypothesis testing, these Cls are only valid under CLM
assumptions. If we have omitted key variables, [3; is biased. If error
variance is not constant, standard errors are improperly computed



Your turn

e What is a consequence of using the invalid confidence interval (say,
95%)?

o A: Clis too wide

e B: Cl is too narrow

o C: 95% confidence level is wrong
o D: Estimator Bj is biased
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Testing linear restriction

@ So far, we discussed hypothesis testing only on parameter 3;. But
some hypotheses involve many parameters

@ For example, mother and father's education have same effects on
log(wage)? Based on WAGE?2.dta, consider

log(wage) = o+ Bimeduc + Pafeduc

+B3educ + Baexper + u

Ho = B1=/
Hi : Bi1# B



Test statistic

@ Remember general way to construct t statistic

estimate — hypothesized value

standard error
@ By OLS estimates 31 and s,
=B
se(f1 — B2)

o Problem: Stata gives us 31 and 3 and their standard errors, but that
is not enough to obtain se(5; — f52)



Your turn

@ Consider two random variables z; and z. Which is correct expression
for Var(z1 + z)?

A: Var(z1 + z
B: Var(zy + =z
C: Var(z1 + =
D: Var(z1 + z

(22)

(z2) + Cov(z1, 2)
+ Var(z) — Cov(zi, z0)

(z2) + 2Cov(z1, 22)

~— — — —
QL
~

/\/‘\N —_
=

~_ — — —



o Note
Var(f1 — B2) = Var(B1) + Var(f,) — 2Cov(B1, 5)
@ Standard error is estimate of its square root
se(r — Pa) = {[se(Br)]* + [se(B2)] — 2512}/
where s15 is estimate of Cov(Bl,ﬂAg). This is the piece we are missing

@ Stata will report sp, if we ask, but calculating se(ﬁAl — Bg) is
cumbersome. It is easier to use the command lincom

@ There is also trick of rewriting the model (see Ch. 4.4)



Example (WAGE?2.dta)

. reg lwage meduc feduc educ exper

Source SS df MS Number of obs = 722
F( 4, 717) = 33.62

Model 20.0299189 4 5.,00747974 Prob > F = 0.0000
Residual 106.781997 717 .148928866 R-squared = 0.1579
Adj R-squared = 0.1533

Total 126.811916 721 .175883378 Root MSE = .38591
lwage Coef.  Std. Err. t P>|t]| [95% Conf. Intervall
meduc .0116931  .0063125 1.85 0.064 -.0007001 .0240864
feduc .011543  .0055606 2.08 0.038 .000626 02246
educ .0653767  .0077995 8.38 0.000 .0500641 .0806892
exper .0233539  .0037799 6.18 0.000 .0159329 .0307749
_cons 5.397237 .1261321 42.79 0.000 5.149604 5.644869




@ Note that Bmeduc — Bfeduc =.0117 — .0115 = .0002, so difference is
very small

. lincom meduc - feduc

(1) meduc - feduc = @

lwage Coef.  Std. Err. t P>|t| [95% Conf. Intervall]

(1) .0001502  .0102829 0.01 0.988 -.020038 .0203384

@ Two-sided p-value is .988. Obviously cannot reject
Ho : Bmeduc = Bfeduc

e Of course, nothing changes (except sign of estimate) if we use
/Bfeduc - Bmeduc
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Testing joint hypotheses

@ t test allows us to test single hypothesis, whether it involves one or
more than one parameter

@ But we sometimes want to test more than one hypothesis

o Generally, it is not valid to look at individual t statistics. We need
statistic used to test joint hypotheses



Example: Major league baseball salaries (MLB1.dta)

@ Consider the model

log(salary)

= o+ Pryears + Bgamesyr + B3bavg
+Bahrunsyr + Bsrbisyr + u

. des salary years gamesyr bavg hrunsyr rbisyr

storage display value
variable name type format label variable label
salary float %9.09g 1993 season salary
years byte %9.0g years in major leagues
gamesyr float %9.09g games per year in league
bavg float %9.0g career batting average
hrunsyr float %9.09g home runs per year
rbisyr float %9.0g rbis per year



@ Hp : Once we control for experience (years) and amount played
(gamesyr), actual performance has no effect on salary

Ho:B3=0,84=0,85=0

To test Hp, we need joint (multiple) hypotheses test

In this case, we only consider alternative
Hi : Hg is not true
i.e. at least one of 33, 84 and f5 is different from zero

@ One-sided alternatives (where, say, each 3 is positive) are hard to deal
with for multiple restrictions. So, we focus on two-sided alternative



. reg lsalary years gamesyr bavg hrunsyr rbisyr

Source SS df MS

Model 308.989208 5 61.7978416
Residual 183.186327 347 .527914487

Total 492,175535 352 1.39822595

Number of obs = 353
F( 5, 347) = 117.06
Prob > F = 0.0000
R-squared = 0.6278
Adj R-squared = 0.6224
Root MSE = .72658

lsalary Coef.  Std. Err. t P>|t| [95% Conf. Intervall
years .0688626 .0121145 5.68 0.000 .0450355 .0926898
gamesyr .0125521 .0026468 4.74 0.000 .0073464 .0177578
bavg .0009786 .0011035 0.89 0.376 -.0011918 .003149
hrunsyr .0144295 .016057 0.90 0.369 -.0171518 .0460107
rbisyr .0107657 .007175 1.50 0.134 -.0033462 .0248776
_cons 11.19242 .2888229 38.75 0.000 10.62435 11.76048




@ None of three performance variables is statistically significant, even
though estimates are all positive

@ Question: By these insignificant t statistics, should we conclude that
none of bavg, hrunsyr, and rbisyr affects baseball player salaries? No.
This would be a mistake

@ Because of severe multicollinearity (sample correlation between
hrunsyr and rbisyr is about .89), individual coefficients, especially on
hrunsyr and rbisyr, are imprecisely estimated. So we need a joint test



Construct F statistic

@ In the general model

y =00+ pPixi+ -+ Pixk +u

we want to test that the last g variables can be excluded

Ho : Bk—g+1=0,...,8ck =0

@ Original model is called unrestricted model. When we impose Hp,
we get
y =P80+ Pix1+ -+ Brk_gxk—q t u

which is called restricted model

@ Denote SSR from unrestricted and restricted models by SSR,,, and

SSR,, respectively. We construct test statistic by comparing SSR,,
and SSR,



@ We know that SSR never decreases when regressors are dropped, i.e.
SSR, > SSRy,,

@ We ask: does SSR increase enough to conclude the restrictions by
Hg are false?

o F statistic does degrees of freedom adjustment. In general,

SSR, — SSR,,)/(df, — dfur) _ (SSR, — SSRur)/q

(
F = =
SSRyr/ dfur SSRu/(n—k — 1)

where g is number of exclusion restrictions imposed under null and k
is number of regressors in unrestricted model (in baseball example,
g=3and k =5)



Rejection rule

@ Note that F > 0 and rejection rule is of the form
F>c

where ¢ is appropriately chosen critical value

e We obtain ¢ using (hard to show) fact that, under Hy (g exclusion
restrictions)

F~ Fq,n—k—l

i.e. F distribution with (g, n — k — 1) degrees of freedom



@ Terminology

g = numerator df = df, — df,,
n—k—1 = denominator df = df,,

@ Tables G.3a, G.3b, and G.3c contain critical values for 10%, 5%, and
1% significance levels

@ Suppose g =3 and n— k — 1 = df,, = 60. Then 5% critical value is
2.76



area = .95

area = .05
%
rejection
2.76 region
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Example (MB1.dta)

@ In MLB example with n = 353, kK =5, and g = 3, we have numerator
df = 3, denominator df = 347. Because the denominator df is above
120, we use “o0” entry. 10% cv is 2.08, 5% cv is 2.60, and 1% cv is
3.78

@ As with t testing, it is better to compute p-value, which is reported
by Stata after every test command

@ F statistic for excluding bavg, hrunsyr, and rbisyr from the model is
9.55. This is well above 1% critical value, so we reject at 1% level. In
fact, to four decimal places, p-value is zero

o We say that bavg, hrunsyr, and rbisyr are jointly statistically
significant

@ F statistic does not tell us which of the coefficients are different from
zero. And t statistics do not help much in this example



. reg lsalary years gamesyr bavg hrunsyr rbisyr

Source SS df MS Number of obs = 353
F( 5, 347) = 117.06
Model 308.989208 5 61.7978416 Prob > F = 0.0000
Residual 183.186327 347 .527914487 R-squared = 0.6278
Adj R-squared = 0.6224
Total 492.175535 352 1.39822595 Root MSE = .72658
lsalary Coef.  Std. Err. t P>|t| [95% Conf. Interval
years .0688626 .0121145 5.68 0.000 .0450355 .0926898
gamesyr .0125521 .0026468 4.74 0.000 .0073464 .0177578
bavg .0009786 .0011035 0.89 0.376 -.0011918 .003149
hrunsyr .0144295 .016057 0.90 0.369 -.0171518 .0460107
rbisyr .0107657 .007175 1.50 0.134 -.0033462 .0248776
_cons 11.19242 .2888229 38.75 0.000 10.62435 11.76048

. test bavg hrunsyr rbisyr

(1)
(2)
(3)

bavg = 0

hrunsyr = 0

rbisyr = 0

F( 3, 347) = 9.55

Prob > F = 0.0000



R? form of F statistic

@ It is useful to be able to compute F statistic using standard output

o R?is reported most of the time, unlike SSR. F statistic for exclusion
restrictions can be computed entirely from R? for restricted and
unrestricted models

@ Key: Because same dependent variable is used

SSR, = (1—R?)SST
SSR,, = (1—R2)SST



@ Simple algebra shows

(1-R)/(n—k-1)

o Note: R2 > R? which implies F >0



F statistic for overall significance of regression

. reg ecolbs ecoprc regprc hhsize faminc age educ

Source SS df MS Number of obs = 660
F( 6, 653) = 4.56

Model 169.099052 6 28.1831753 Prob > F = 0.0002
Residual 4035.03777 653 6.17923089 R-squared = 0.0402
Adj R-squared = 0.0314

Total 4204.13682 659 6.3795703 Root MSE = 2.4858
ecolbs Coef.  Std. Err. t P>|t]| [95% Conf. Interval]
ecoprc -2.861237 .5919913 -4.83 0.000 -4.023673 -1.6988
regprc 3.006077 .7123078 4.22 0.000 1.607387 4.404767
hhsize .0630935 .0677804 0.93 0.352 -.0700003 .1961874
faminc .0021952 .0028653 0.77 0.444 -.0034311 .0078216
age .0013894 .0067634 0.21 0.837 -.0118914 .0146701
educ .0343134 .0453141 0.76 0.449 -.0546655 .1232923
_cons 1.05677 .8926501 1.18 0.237 -.6960404 2.809581




@ F statistic in upper right corner of output tests very special null
hypothesis. In the model

y = Bo+ Brxa+ Baxa+ ... + Brxk + u
the null is that all slope coefficients are zero
Ho:p51=0,....8¢k=0
@ This means none of x;'s helps to explain y

o If we cannot reject this null, we find no factors that explain y



o For this test, R? = 0 (no explanatory variables under Hp), and
R2, = R? from the regression. So, F statistic is
R?/k R2  (n—k-—1)

F:(l—R2)/(n—k—1):(1—R2). k

i.e. Fis directly related to R?. As R? increases, so does F

@ Increasing n increases F. Increasing k decreases F
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Single dummy variable

@ For example
wage = [y + dofemale + u

e Under SLR.4 E(u|female) = 0,
E(wage|female) = [y + dofemale

@ Average wage for men is By, average wage for women is 5y + dg, and
do is difference in average wage between women and men

@ Inference methods in Ch. 4 directly apply



Interactions among dummy variables

@ For two dummy variables, say female and married, we may consider
wage = [y + [ifemale + Bamarried + [B3female - married + u

which can estimate average wage for four categories (single male,
single female, married male, married female)

@ Interaction with quantitative variable provides slope dummy: e.g.
wage = (o + Pifemale + Brexper + [3female - exper + u

@ Again inference methods in Ch. 4 directly apply



Testing for differences in regression functions across groups

@ We necessarily get same estimated intercepts and slopes if we
estimate regressions separately for men and women

@ Null hypothesis that there is no difference in wage between men and
women at same levels of experience is

Ho:51=0,063=0
which can be tested by F-test

@ This is a version of Chow test for equality of regression functions
across two groups. We test joint significance of dummy variable
defining groups as well as interaction terms



Chow test

@ In general k variable case, we can define dummy variable w indicating
two groups. Then

y = Po+Pixa+ Baxe+ ...+ Bexk
+0ow + 5w X1+ 0w -xo+ ... F WX+ u
Hp:00=0,01=0,00=0,...,0, =0
for k + 1 restrictions
@ Do F test for k 4+ 1 exclusion restrictions

@ Chow test statistic often strongly rejects because of §g # 0. So it is
often of interest to allow dp # 0 and just test equality of the slopes
(by F test)

Hy :01=0,00=0,...,0, =0
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