# EC2C4: Econometrics II <br> Multiple Regression: Inference 

Ragvir Sabharwal

LSE

Lent Term 2022/23

## Introduction

## Recap

- So far, what do we know about regression model?
- MLR.1: $y=\beta_{0}+\beta_{1} x_{1}+\cdots+\beta_{k} x_{k}+u$
- MLR.2: random sampling from population
- MLR.3: no perfect collinearity in sample
- MLR.4: $E\left(u \mid x_{1}, \ldots, x_{k}\right)=E(u)=0$ (exogenous regressor)
- MLR.5: $\operatorname{Var}\left(u \mid x_{1}, \ldots, x_{k}\right)=\operatorname{Var}(u)=\sigma^{2}$ (homoskedasticity)
- (1) Algebraic properties of OLS estimators for any sample, regression anatomy formula, goodness-of-fit $R^{2}$, and interpretation of OLS regression line
- (2) Unbiasedness of OLS under MLR.1-4 and omitted variable bias (failure of MLR.4)
- (3) Formula for $\operatorname{Var}\left(\hat{\beta}_{j} \mid \mathbf{X}\right)$ under MLR.1-5


## Sampling distributions of OLS estimators (Wooldridge, Ch. 4.1)

## Testing hypotheses on $\beta_{j}$

- We now want to test hypotheses about $\beta_{j}$. Hypothesise that $\beta_{j}$ takes certain value, then use data to determine whether to reject the hypothesis or not
- For example, based on ATTEND.dta

$$
\text { final }=\beta_{0}+\beta_{1} \text { missed }+\beta_{2} \text { priGPA }+\beta_{3} A C T+u
$$

where $A C T$ is achievement test score. Null hypothesis that missing lecture has no effect on final exam performance (after controlling for prior GPA and ACT score) is

$$
H_{0}: \beta_{1}=0
$$

## What we know about $\hat{\beta}_{j}$

- To test hypotheses about $\beta_{j}$, we need to know more than just mean and variance of $\hat{\beta}_{j}$
- Under MLR.1-4, we can compute expected value as

$$
E\left(\hat{\beta}_{j}\right)=\beta_{j}
$$

- Under MLR.1-5, we know variance is

$$
\operatorname{Var}\left(\hat{\beta}_{j} \mid \mathbf{X}\right)=\frac{\sigma^{2}}{\operatorname{SST}_{j}\left(1-R_{j}^{2}\right)}
$$

and $\hat{\sigma}^{2}=S S R /(n-k-1)$ is an unbiased estimator of $\sigma^{2}$

## What we want: Sampling distribution of $\hat{\beta}_{j}$

- Hypothesis testing requires entire sampling distribution of $\hat{\beta}_{j}$. Even under MLR.1-5, sample distributions can be virtually anything
- Write

$$
\hat{\beta}_{j}=\beta_{j}+\sum_{i=1}^{n} w_{i j} u_{i}
$$

where $w_{i j}$ 's are functions of $\mathbf{X}$

- Conditional on $\mathbf{X}$, the distribution of $\hat{\beta}_{j}$ is determined by that of $\left(u_{1}, \ldots, u_{n}\right)$


## Assumption MLR. 6

- Assumption MLR. 6 (Normality)

Error term $u$ is independent of $\left(x_{1}, \ldots, x_{k}\right)$ and is normally distributed with mean zero and variance $\sigma^{2}$

$$
u \sim \operatorname{Normal}\left(0, \sigma^{2}\right)
$$

- MLR. 6 implies MLR.4: $E\left(u \mid x_{1}, \ldots, x_{k}\right)=E(u)=0$
- Also MLR. 6 implies MLR.5: $\operatorname{Var}\left(u \mid x_{1}, \ldots, x_{k}\right)=\operatorname{Var}(u)=\sigma^{2}$
- Now MLR. 6 imposes full independence between $u$ and $\left(x_{1}, \ldots, x_{k}\right)$ (not just mean and variance independence)
- By MLR.6, we now impose very specific distributional assumption for $u$ : the familiar bell-shaped curve


## Your turn

- Suppose

$$
z \sim \operatorname{Normal}(E(z), \operatorname{Var}(z))
$$

for $E(z) \neq 0$

- Which is true?
- A: $\frac{z-E(z)}{\operatorname{Var}(z)} \sim \operatorname{Normal}(0,1)$
- B: $\frac{z-E(z)}{\sqrt{\operatorname{Var}(z)}} \sim \operatorname{Normal}(0,1)$
-C: $\frac{z}{\operatorname{Var}(z)} \sim \operatorname{Normal}(0,1)$


## Important fact about normal random variables

- Linear combination of normal random variables is also normally distributed
- Because $u_{i}$ 's are independent and identically distributed (called iid) as $\operatorname{Normal}\left(0, \sigma^{2}\right)$ and $\hat{\beta}_{j}=\beta_{j}+\sum_{i=1}^{n} w_{i j} u_{i}$, we have

$$
\hat{\beta}_{j} \mid \mathbf{X} \sim \operatorname{Normal}\left(\beta_{j}, \operatorname{Var}\left(\hat{\beta}_{j} \mid \mathbf{X}\right)\right)
$$

where $\mathbf{X}$ are data for all regressors and we already know the formula for $\operatorname{Var}\left(\hat{\beta}_{j} \mid \mathbf{X}\right)$

$$
\operatorname{Var}\left(\hat{\beta}_{j} \mid \mathbf{X}\right)=\frac{\sigma^{2}}{S S T_{j}\left(1-R_{j}^{2}\right)}
$$

## Theorem: Normal sampling distribution

- Under Assumptions MLR.1-6

$$
\hat{\beta}_{j} \mid \mathbf{X} \sim \operatorname{Normal}\left(\beta_{j}, \operatorname{Var}\left(\hat{\beta}_{j} \mid \mathbf{X}\right)\right)
$$

and so

$$
\frac{\hat{\beta}_{j}-\beta_{j}}{\operatorname{sd}\left(\hat{\beta}_{j}\right)} \sim \operatorname{Normal}(0,1)
$$

- The second result follows from property of normal distribution: if $W \sim$ Normal, then $a+b W \sim$ Normal for constants $a$ and $b$
- Under MLR.1-5, standardized random variable

$$
\frac{\hat{\beta}_{j}-\beta_{j}}{s d\left(\hat{\beta}_{j}\right)}
$$

always has zero mean and variance one. Under MLR.6, it is also normally distributed

- Notice that second result holds even when we do not condition on X

Testing hypotheses about a single population parameter (Wooldridge, Ch. 4.2)

## Obtaining a test statistic

- We cannot directly use the result

$$
\frac{\hat{\beta}_{j}-\beta_{j}}{\operatorname{sd}\left(\hat{\beta}_{j}\right)} \sim \operatorname{Normal}(0,1)
$$

to test hypotheses about $\beta_{j}$ because $\operatorname{sd}\left(\hat{\beta}_{j}\right)$ depends on unknown $\sigma=\sqrt{\operatorname{Var}(u)}$

- So replace $\sigma$ with $\hat{\sigma}$ (i.e. replace $\operatorname{sd}\left(\hat{\beta}_{j}\right)$ with standard error $\left.\operatorname{se}\left(\hat{\beta}_{j}\right)\right)$


## Theorem: $t$ distribution for standardised estimator

- Under Assumptions MLR. 1-6

$$
\frac{\hat{\beta}_{j}-\beta_{j}}{\operatorname{se}\left(\hat{\beta}_{j}\right)} \sim t_{n-k-1}=t_{d f}
$$

- We will not prove this as the argument is somewhat involved
- Due to replacement of $\sigma$ with $\hat{\sigma}$, the distribution changes from standard normal to $t$ distribution


## $t$ distribution

- $t$ distribution also has bell shape but is more spread out than Normal(0,1)

$$
\begin{aligned}
E\left(t_{d f}\right) & =0 \text { if } d f>1 \\
\operatorname{Var}\left(t_{d f}\right) & =\frac{d f}{d f-2}>1 \text { if } d f>2
\end{aligned}
$$

- If $d f=10$, then $\operatorname{Var}\left(t_{d f}\right)=1.25(25 \%$ larger than variance of $\operatorname{Normal}(0,1))$
- If $d f=120$, then $\operatorname{Var}\left(t_{d f}\right) \approx 1.017$ (only $1.7 \%$ larger)
- As $d f \rightarrow \infty$

$$
t_{d f} \rightarrow \operatorname{Normal}(0,1)
$$

## Graph of $N(0,1)$ and $t_{6}$



## $t$ statistic

- We use result on $t$ distribution to test null hypothesis that $x_{j}$ has no partial effect on $y$

$$
H_{0}: \beta_{j}=0
$$

- To test $H_{0}: \beta_{j}=0$, we use $t$ statistic (or $t$ ratio)

$$
t_{\hat{\beta}_{j}}=\frac{\hat{\beta}_{j}}{\operatorname{se}\left(\hat{\beta}_{j}\right)}
$$

- We measure how far $\hat{\beta}_{j}$ is from zero relative to its standard error
- Because se $\left(\hat{\beta}_{j}\right)>0, t_{\hat{\beta}_{j}}$ has same sign as $\hat{\beta}_{j}$. To test $H_{0}: \beta_{j}=0$, we need alternative hypothesis


## Testing against one-sided alternatives

- First consider the alternative

$$
H_{1}: \beta_{j}>0
$$

which means the null is effectively

$$
H_{0}: \beta_{j} \leq 0
$$

- If we reject $\beta_{j}=0$ then reject any $\beta_{j}<0$ too
- We often just state $H_{0}: \beta_{j}=0$ and act like we do not care about negative values
- If $\hat{\beta}_{j}<0$, it provides no evidence against $H_{0}$ in favor of $H_{1}: \beta_{j}>0$
- If $\hat{\beta}_{j}>0$, the question is: How big does $t_{\hat{\beta}_{j}}=\frac{\hat{\beta}_{j}}{\operatorname{se}\left(\hat{\beta}_{j}\right)}$ have to be to conclude $H_{0}$ is not a credible hypothesis?


## Traditional approach to hypothesis testing

- (1) Choose null hypothesis $H_{0}: \beta_{j}=0$ (or $H_{0}: \beta_{j} \leq 0$ )
- (2) Choose alternative hypothesis $H_{1}: \beta_{j}>0$
- (3) Choose significance level for the test. That is, probability of rejecting $H_{0}$ when it is in fact true (Type I Error). Suppose we use $5 \%$, so probability of committing Type I error is .05
- (4) Choose critical value $c$ so that rejection rule

$$
t_{\hat{\beta}_{j}}>c
$$

leads to $5 \%$ level test

## How to get critical value

- Key: Under the null hypothesis $H_{0}: \beta_{j}=0$

$$
t_{\hat{\beta}_{j}} \sim t_{n-k-1}=t_{d f}
$$

- Use this to obtain critical value $c$
- Suppose $d f=28$ and $5 \%$ significance level. Critical value is $c=1.701$ (from Table G.2)
- Following picture shows how to find $c$ for one-tailed test



## Rejection rule

- So, with $d f=28$, rejection rule for $H_{0}: \beta_{j}=0$ against $H_{1}: \beta_{j}>0$, at $5 \%$ level, is

$$
t_{\hat{\beta}_{j}}>1.701
$$

We need $t$ statistic greater than 1.701 to conclude there is enough evidence against $H_{0}$

- If $t_{\hat{\beta}_{j}} \leq 1.701$, we fail to reject $H_{0}$ against $H_{1}$ at $5 \%$ significance level


## Different significance level

- Suppose $d f=28$, but we want to carry out test at different significance level (often $10 \%$ or $1 \%$ level)

$$
\begin{aligned}
& c .10=1.313 \\
& c .05=1.701 \\
& c .01=2.467
\end{aligned}
$$

- If we want to reduce probability of Type I error, we must increase critical value (so we reject the null less often)
- If we reject at, say, $1 \%$ level, then we must also reject at any larger level
- If we fail to reject at, say, $10 \%$ level (i.e. $t_{\hat{\beta}_{j}} \leq 1.313$ ), then we will fail to reject at any smaller level
- With large sample sizes, we can use critical values from standard normal distribution. These are $d f=\infty$ entry in Table G. 2

$$
\begin{aligned}
& c .10=1.282 \\
& c .05=1.645 \\
& c .01=2.326
\end{aligned}
$$

which we can round to $1.28,1.65$, and 2.33 , respectively. The value 1.65 is especially common for one-tailed test

## Example: Does ACT score help to predict college GPA (GPA1.dta)

- Model: $\operatorname{colGPA}=\beta_{0}+\beta_{h s G P A} h s G P A+\beta_{A C T} A C T+u$ Null hypothesis is $H_{0}: \beta_{A C T}=0$
. reg colGPA hsGPA ACT

- From output, $\hat{\beta}_{A C T}=.0094$ and $t_{A C T}=.87$. Even at $10 \%$ level ( $c=1.28$ ), we cannot reject $H_{0}$ against $H_{1}: \beta_{A C T}>0$
- Because we fail to reject $H_{0}: \beta_{A C T}=0$, we say that " $\hat{\beta}_{A C T}$ is statistically insignificant at $10 \%$ level against one-sided alternative"
- Note that estimated effect of ACT is also small. Three more points (slightly more than one standard deviation) only predicts $.0094(3) \approx .028$ increase in colGPA
- By contrast, $\hat{\beta}_{h s G P A}=.453$ is large in practical sense and $t_{h s G P A}=4.73$ is very large. So " $\hat{\beta}_{h s G P A}$ is statistically significant" at very small significance levels


## Your turn

- Which of the following can cause the usual $t$ test above invalid?
(a) Heteroskedasticity
(b) Correlation coefficient of .95 between two regressors
(c) Omitting an important variable
- A: All of them can invalidate
- B: Only (a) can invalidate
- C: Only (c) can invalidate
- D: Two of them can invalidate


## Again, Your turn

- What is a consequence of using the invalid $t$ test with $5 \%$ significance level, say?
- A: Critical value is too large
- B: Critical value is too small
- C: $5 \%$ significance level is wrong
- D: Conclusion (reject or not) is always wrong


## Negative one-sided alternative

- For negative one-sided alternative

$$
H_{1}: \beta_{j}<0
$$

we must see significantly negative value for $t$ statistic to reject $H_{0}: \beta_{j}=0$ in favor of $H_{1}: \beta_{j}<0$

- So the rejection rule is

$$
t_{\hat{\beta}_{j}}<-c
$$

where $c$ is chosen in the same way as in positive case

- With $d f=18$ and $5 \%$ level, critical value is $c=-1.734$, so rejection rule is

$$
t_{\hat{\beta}_{j}}<-1.734
$$



## Testing against two-sided alternatives

- Sometimes we do not know ahead of time whether a variable definitely has positive or negative effect
- Even in the example

$$
\text { final }=\beta_{0}+\beta_{1} \text { missed }+\beta_{2} \text { priGPA }+\beta_{3} A C T+u
$$

it is conceivable that missing class helps final exam performance (extra time is used for studying, say)

- In this case, null and alternative are

$$
\begin{aligned}
& H_{0}: \quad \beta_{j}=0 \\
& H_{1}:
\end{aligned} \quad \beta_{j} \neq 0
$$

## Rejection rule

- Now we reject if $\hat{\beta}_{j}$ is sufficiently large in magnitude either positive or negative
- We again use $t$ statistic $t_{\hat{\beta}_{j}}=\frac{\hat{\beta}_{j}}{\operatorname{se}\left(\hat{\beta}_{j}\right)}$, but now rejection rule is

$$
\left|t_{\hat{\beta}_{j}}\right|>c
$$

- This results in two-tailed test and critical values are given by Table G. 2
- For example, if $d f=25$ and $5 \%$ level, two-tailed $c$ is 2.06 (97.5-th percentile in $t_{25}$ distribution)
- On the other hand, one-tailed $c$ is 1.71 (95-th percentile in $t_{25}$ distribution)



## Example: Factors affecting math pass rates (MEAP93.dta)

- Regress from math10 on Inchprg, Isalary, enroll
. des math10 lnchprg lsalary enroll

|  | storage <br> type | display <br> format | value <br> label |
| :--- | :--- | :--- | :--- | | variable label |  |
| :--- | :--- |
| math10 | float $\% 9.0 \mathrm{~g}$ |
| lnchprg | float $\% 9.0 \mathrm{~g}$ |$\quad$| perc studs passing MEAP math |
| :--- |
| lsalary |

- A priori, we might expect Inchprg to has negative effect (it is essentially school-level poverty rate) and Isalary to has positive effect. But we can still test against two-sided alternative to avoid specifying alternative ahead of time. enroll is clearly ambiguous
- Since $n=408$, we use standard normal critical values: $c_{.10}=1.65$, $c_{.05}=1.96$, and $c_{.01}=2.58$
. reg math10 lnchprg lsalary enroll

| Source | SS | df | MS |
| :---: | :---: | :---: | :---: |
| Model | 8075.34004 | 3 | 2691.78001 |
| Residual | 36741.8404 | 404 | 90.9451496 |
| Total | 44817.1805 | 407 | 110.115923 |


| Number of obs | $=408$ |
| :--- | ---: | ---: |
| F( 3, 404) | $=29.60$ |
| Prob $>$ F | $=0.0000$ |
| R-squared | $=0.1802$ |
| Adj R-squared | $=0.1741$ |
| Root MSE | $=9.5365$ |


| math10 | Coef. | Std. Err. | $t$ | $\mathrm{P}>\|\mathrm{t}\|$ | [95\% Conf. Interval] |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| lnchprg | -.2878203 | .0380285 | -7.57 | 0.000 | -.3625787 | -.2130618 |
| lsalary | 7.969246 | 3.75663 | 2.12 | 0.034 | .5842628 | 15.35423 |
| enroll | -.0001741 | .0001991 | -0.87 | 0.382 | -.0005656 | .0002173 |
| _cons | -50.69248 | 39.03804 | -1.30 | 0.195 | -127.4355 | 26.05057 |

- Coefficients of Inchprg and Isalary have anticipated signs. So we easily reject $H_{0}: \beta_{\text {lnchprg }}=0$ against $H_{1}: \beta_{\text {lnchprg }} \neq 0$. Also we reject $H_{0}: \beta_{\text {lsalary }}=0$ against $H_{1}: \beta_{\text {lsalary }} \neq 0$ at $5 \%$ level, but not for $1 \%$ level.
- enroll is different. $\left|t_{\text {enroll }}\right|=0.87<1.65$, so we fail to reject $H_{0}$ at even $10 \%$ level


## Your turn

- Suppose you do not reject $H_{0}: \beta_{j}=0$ against two-sided alternative $H_{1}: \beta_{j} \neq 0$ at the $5 \%$ significance level. Based on this and $\hat{\beta}_{j}>0$, can we conclude about one-sided test for $\tilde{H}_{0}: \beta_{j}=0$ against $\tilde{H}_{1}: \beta_{j}>0$ at $5 \%$ level?
- A: We do not reject $\tilde{H}_{0}$
- B: We reject $\tilde{H}_{0}$
- C: Not enough information to conclude


## Testing other hypotheses about $\beta_{j}$

- Testing the null $H_{0}: \beta_{j}=0$ is by far most common. That is why Stata automatically reports $t$ statistic for this hypothesis
- It is critical to remember that

$$
t_{\hat{\beta}_{j}}=\frac{\hat{\beta}_{j}}{\operatorname{se}\left(\hat{\beta}_{j}\right)}
$$

is only for $H_{0}: \beta_{j}=0$

- What if we want to test different null value? For example, in constant-elasticity consumption function

$$
\log (\text { cons })=\beta_{0}+\beta_{1} \log (\text { inc })+\beta_{2} \text { famsize }+\beta_{3} \text { pareduc }+u
$$

we might want to test

$$
H_{0}: \beta_{1}=1
$$

i.e. income elasticity is one (we are pretty sure that $\beta_{1}>0$ )

## Testing for $H_{0}: \beta_{j}=a_{j}$

- More generally, suppose the null is

$$
H_{0}: \beta_{j}=a_{j}
$$

where we specify the value $a_{j}$ (usually zero but in above example $a_{j}=1$ )

- It is easy to extend $t$ statistic

$$
t=\frac{\hat{\beta}_{j}-a_{j}}{\operatorname{se}\left(\hat{\beta}_{j}\right)}
$$

- This $t$ statistic measures how far our estimate $\hat{\beta}_{j}$ is from the hypothesized value $a_{j}$ relative to $\operatorname{se}\left(\widehat{\beta}_{j}\right)$


## General expression for $t$ test

- General expression for $t$ test is

$$
t=\frac{\text { estimate }- \text { hypothesized value }}{\text { standard error }}
$$

- Alternative can be one-sided or two-sided
- We choose critical values in exactly same way as before


## Example: Crime and enrollment on college campuses (CAMPUS.dta)

- Bivariate regression

$$
\begin{aligned}
\log (\text { crime }) & =\beta_{0}+\beta_{1} \log (\text { enroll })+u \\
H_{0} & : \beta_{1}=1 \\
H_{1} & : \beta_{1}>1
\end{aligned}
$$

. des crime enroll

|  | storage <br> type | display <br> format | value <br> label |
| :--- | :--- | :--- | :--- |
| crime | int $\% 9.0 \mathrm{~g}$ <br> enroll float <br> $\% 9.0 \mathrm{~g}$  |  | total campus crimes <br> total enrollment |

. reg lcrime lenroll

| Source | SS | df MS |  |  | Number of obs = 97 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | F( 1, 95) = 133.79 |  |
| Model | 107.083654 | 110 | 107.083654 |  | Prob > F | $=0.0000$ |
| Residual | 76.0358244 | 95.800377098 |  |  | R-squared | $=0.5848$ |
|  |  |  |  |  | Adj R-squared Root MSE | $=0.5804$ |
| Total | 183.119479 | $96 \quad 1.90749457$ |  |  |  | $=.89464$ |
| lcrime | Coef. | Std. Err. | t | $P>\|t\|$ | [95\% Conf. Interval] |  |
| lenroll | 1.26976 | . 109776 | 11.57 | 0.000 | 1.051827 | 1.487693 |
| _cons | -6.63137 | 1.03354 | -6.42 | 0.000 | -8.683206 | -4.579533 |

- We get $\hat{\beta}_{1}=1.27$. So $1 \%$ increase in enrollment is estimated to increase crime by $1.27 \%$ (so more than 1\%). Is this estimate statistically greater than one?
- Although we cannot pull $t$ statistic from output, we can compute it by hand

$$
t=\frac{(1.270-1)}{.110} \approx 2.45
$$

- We have $d f=97-2=95$. So use $d f=120$ entry in Table G.2. Since $c .01=2.36$, we reject at $1 \%$ level
- Alternatively, we can let Stata do the work using lincom ("linear combination" command)


## Computing $p$-values for $t$ tests

- In traditional approach for testing, we choose significance level ahead of time. This can be cumbersome
- Plus, it can hide some information. Even if we reject at $5 \%$ level with $c_{.05}=1.645$, the $t$ statistic of 2 and 4 might convey different information
- Instead of fixing level ahead of time, it is better to answer the following question: Given the observed value of $t$ statistic, what is the smallest significance level at which we can reject $H_{0}$ ?
- Such smallest level is known as $p$-value. It allows us to carry out test at any level
- One way to think about $p$-values is that it uses the observed statistic as critical value, and then finds significance level of the test using that critical value
- It is most common to report $p$-values for two-sided alternatives (this is what Stata does)
- For $t$ testing against two-sided alternative

$$
p \text {-value }=P(|T|>|t|)
$$

where $t$ is the value of $t$ statistic and $T$ is a random variable with $t_{d f}$ distribution

## Interpretation of $p$-value

- Perhaps the best way to think about $p$-values: it is probability of observing the statistic as extreme as we did if $H_{0}$ is true
- So smaller $p$-values provide more are evidence against the null. For example, if $p$-value $=.50$, then there is $50 \%$ chance of observing $t$ as large as we did (in absolute value). This is not enough evidence against $H_{0}$
- If $p$-value $=.001$, then the chance of seeing $t$ statistic as extreme as we did is $.1 \%$. We can conclude that we got very rare sample or that the null hypothesis is highly unlikely
- From

$$
p \text {-value }=P(|T|>|t|)
$$

we see that as $|t|$ increases $p$-value decreases. Large absolute $t$ statistics are associated with small $p$-values

- Suppose $d f=40$ and, from our data, we obtain $t=1.85$ or $t=-1.85$. Then

$$
p \text {-value }=P(|T|>1.85)=2 P(T>1.85)=2(.0359)=.0718
$$

where $T \sim t_{40}$. Finding actual number requires Stata


## Test by $p$-value

- Given $p$-value, we can carry out test at any significance level. If $\alpha$ is chosen level, then

$$
\text { Reject } H_{0} \text { if } p \text {-value }<\alpha
$$

- For example, in previous example we got $p$-value $=.0718$. This means we reject $H_{0}$ at $10 \%$ level but not $5 \%$ level. We reject at $8 \%$ but not at 7\%
- Knowing $p$-value $=.0718$ is clearly much better than just saying "I fail to reject at $5 \%$ level"


## Computing $p$-values for one-sided alternatives

- In Stata, two-sided $p$-values for $H_{0}: \beta_{j}=0$ are given in the column labeled " $P>|t|$ "
- With caveat, one sided $p$-value is given by

$$
\text { one-sided } p \text {-value }=\frac{\text { two-sided } p \text {-value }}{2}
$$

- We only want the area in one tail, not two tails
- The caveat is: estimated coefficient should be in the direction of the alternative, otherwise one-sided $p$-value would be above . 50


## Example: Factors affecting NBA salaries (NBASAL.dta)

. des wage games avgmin points rebounds assists

|  | storage <br> type | display <br> format | value <br> label |
| :--- | :--- | :--- | :--- | variable label | vage | float $\% 9.0 \mathrm{~g}$ |  |
| :--- | :--- | :--- |
| games | byte | $\% 9.0 \mathrm{~g}$ |
| avgmin | float $\% 9.0 \mathrm{~g}$ |  |
| points | float $\% 9.0 \mathrm{~g}$ | annual salary, thousands $\$$ <br> rebounds |
| float $\% 9.0 \mathrm{~g}$ |  | minutes per game |

. sum wage games avgmin points rebounds assists

| Variable | Obs | Mean | Std. Dev. | Min | Max |
| ---: | ---: | ---: | ---: | ---: | ---: |
| wage | 269 | 1423.828 | 999.7741 | 150 | 5740 |
| games | 269 | 65.72491 | 18.85111 | 3 | 82 |
| avgmin | 269 | 23.97925 | 9.731177 | 2.888889 | 43.08537 |
| points | 269 | 10.21041 | 5.900667 | 1.2 | 29.8 |
| rebounds | 269 | 4.401115 | 2.892573 | .5 | 17.3 |
| assists | 269 | 2.408922 | 2.092986 | 0 | 12.6 |

. reg lwage games avgmin points rebounds assists

| Source | SS | df | MS |
| ---: | :---: | ---: | :---: |
| Model <br> Residual | 90.2698185 | $\mathbf{5}$ | 117.918945 |
| Total | 263 | .448361006 |  |
| 208.188763 | 268 | .776823743 |  |


| Number of obs | $=269$ |
| :--- | ---: | ---: |
| F $(5,263)$ | $=40.27$ |
| Prob $>$ F | $=0.0000$ |
| R-squared | $=0.4336$ |
| Adj R-squared | $=0.4228$ |
| Root MSE | $=.6696$ |


| lwage | Coef. | Std. Err. | t | $\mathrm{P}>\|\mathrm{t}\|$ | [95\% Conf. Interval] |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| games | .0004132 | .002682 | 0.15 | 0.878 | -.0048679 | .0056942 |
| avgmin | .0302278 | .0130868 | 2.31 | 0.022 | .0044597 | .055996 |
| points | .0363734 | .0150945 | 2.41 | 0.017 | .0066519 | .0660949 |
| rebounds | .0406795 | .0229455 | 1.77 | 0.077 | -.0045007 | .0858597 |
| assists | .0003665 | .0314393 | 0.01 | 0.991 | -.0615382 | .0622712 |
| _cons | 5.648996 | .1559075 | 36.23 | 0.000 | 5.34201 | 5.955982 |

- Except for intercept, none of variables is statistically significant at $1 \%$ level against two-sided alternative. The closest is points with $p$-value $=.017$ (One-sided $p$-value is $.017 / 2=.0085<.01$, so it is significant at $1 \%$ level against positive one-sided alternative)
- avgmin is statistically significant at $5 \%$ level because $p$-value $=.022<.05$
- rebounds is statistically significant at $10 \%$ level (against two-sided alternative) because $p$-value $=.077<.10$, but not at $5 \%$ level. But one-sided $p$-value is $.077 / 2=.0385$
- Both games and assists have very small $t$ statistics, which lead to $p$-values close to one (for example, for assists, $p$-value $=.991$ ). These variables are statistically insignificant


## Practical versus statistical significance

- $t$ testing is purely about statistical significance. It does not directly speak to the issue of whether a variable has practically or economically large effect
- Practical or economic significance depends on the size (and sign) of $\hat{\beta}_{j}$
- Statistical significance depends on $t_{\hat{\beta}_{j}}$
- It is possible that although the estimate $\hat{\beta}_{j}$ indicates practically large effect, the estimate is so imprecise that it is statistically insignificant. This is especially an issue with small data sets
- Even more importantly, it is possible to get estimates that are statistically significant but are not practically large. This can happen with very large data sets


## Confidence intervals <br> (Wooldridge, Ch. 4.3)

## Confidence interval

- Rather than just testing hypotheses about parameters it is also useful to construct confidence intervals (Cls, also known as interval estimators)
- Instead of so-called looking at a "point estimator" as we have done so far, we now consider a range of values as our estimator for an unknown population parameter. It takes into account the uncertainty associated with a point estimator
- We will only consider Cls of the form

$$
\hat{\beta}_{j} \pm c \cdot \operatorname{se}\left(\hat{\beta}_{j}\right)
$$

where $c>0$ is chosen based on confidence level

- We will use $95 \%$ confidence level, in which case c comes from 97.5 percentile in $t_{d f}$ distribution. In other words, $c$ is $5 \%$ critical value against two-sided alternative
- Stata automatically reports at $95 \% \mathrm{Cl}$ for each parameter, based on $t$ distribution using appropriate $d f$


## Example (NBASAL.dta)

. reg lwage games avgmin points rebounds assists

| Source | SS | $d f$ | MS |
| ---: | :---: | ---: | :---: |
| Model <br> Residual | $\mathbf{9 0 . 2 6 9 8 1 8 5}$ | 117.918945 | 263 |


| Number of obs | $=269$ |
| :--- | ---: | ---: |
| F( 5, 263) | $=\mathbf{4 0 . 2 7}$ |
| Prob $>$ F | $=0.0000$ |
| R-squared | $=0.4336$ |
| Adj R-squared | $=0.4228$ |
| Root MSE | $=.6696$ |


| lwage | Coef. | Std. Err. | t | $\mathrm{P}>\|\mathrm{t}\|$ | [95\% Conf. Interval] |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| games | .0004132 | .002682 | 0.15 | 0.878 | -.0048679 | .0056942 |
| avgmin | .0302278 | .0130868 | 2.31 | 0.022 | .0044597 | .055996 |
| points | .0363734 | .0150945 | 2.41 | 0.017 | .0066519 | .0660949 |
| rebounds | .0406795 | .0229455 | 1.77 | 0.077 | -.0045007 | .0858597 |
| assists | .0003665 | .0314393 | 0.01 | 0.991 | -.0615382 | .0622712 |
| _cons | 5.648996 | .1559075 | 36.23 | 0.000 | 5.34201 | 5.955982 |

- Notice how three estimates that are not statistically different from zero at 5\% level - games, rebounds, and assists - all have 95\% Cls that include zero. For example, $95 \% \mathrm{Cl}$ for $\beta_{\text {rebounds }}$ is

$$
[-.0045, .0859]
$$

- By contrast, $95 \% \mathrm{Cl}$ for $\beta_{\text {points }}$ is
[.0067,.0661]
which excludes zero


## Interpretation of Cl

- Properly interpreting Cl is a bit tricky. We often see statements like "there is $95 \%$ chance that $\beta_{\text {points }}$ is in interval [.0067, .0661]." This is incorrect. $\beta_{\text {points }}$ is some fixed value, and it either is or is not in the interval
- Correct way to interpret Cl is to remember that the endpoints $\hat{\beta}_{j} \pm c \cdot \operatorname{se}\left(\hat{\beta}_{j}\right)$ change with each sample (i.e. endpoints are random outcomes)
- What $95 \% \mathrm{Cl}$ means is that in hypothetically repeated random sampling, the interval we compute using the rule $\hat{\beta}_{j} \pm c \cdot \operatorname{se}\left(\hat{\beta}_{j}\right)$ will include the value $\beta_{j}$ in $95 \%$ of cases. But for a particular sample we will never know whether $\beta_{j}$ is in the interval or not


## Cl and hypothesis testing

- By $95 \% \mathrm{Cl}$ for $\beta_{j}$, we can test any null value against two-sided alternative at $5 \%$ level. Consider

$$
\begin{aligned}
& H_{0}: \beta_{j}=a_{j} \\
& H_{1}:
\end{aligned} \quad \beta_{j} \neq a_{j}
$$

- (1) If $a_{j}$ is in $95 \% \mathrm{Cl}$, then we fail to reject $H_{0}$ at $5 \%$ level
- (2) If $a_{j}$ is not in $95 \% \mathrm{Cl}$ then we reject $H_{0}$ in favor of $H_{1}$ at $5 \%$ level


## Example (WAGE2.dta)

. reg lwage educ IQ exper meduc

| Source | SS | df | MS |
| ---: | ---: | ---: | ---: |
| Model <br> Residual | 26.949693 | 4 | 6.73742325 |
| Total | 122.411347 | 852 | .14367529 |


| Number of obs | $=857$ |
| :--- | ---: | ---: |
| F( 4, 852) | $=\mathbf{4 6 . 8 9}$ |
| Prob $>$ F | $=0.0000$ |
| R-squared | $=0.1804$ |
| Adj R-squared | $=0.1766$ |
| Root MSE | $=.37905$ |


| lwage | Coef. | Std. Err. | t | $\mathrm{P}>\|\mathrm{t}\|$ | [95\% Conf. Interval] |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| educ | .0547499 | .0077049 | 7.11 | 0.000 | .039627 | .0698727 |
| IQ | .0054188 | .0010253 | 5.28 | 0.000 | .0034064 | .0074312 |
| exper | .0222246 | .0034192 | 6.50 | 0.000 | .0155134 | .0289357 |
| meduc | .0126417 | .0049645 | 2.55 | 0.011 | .0028977 | .0223857 |
| _cons | 5.108905 | .1264354 | 40.41 | 0.000 | 4.860744 | 5.357066 |

- $95 \% \mathrm{Cl}$ for $\beta_{I Q}$ is about [.0034,.0074]. So we can reject $H_{0}: \beta_{I Q}=0$ against two-sided alternative at $5 \%$ level. We cannot reject $H_{0}: \beta_{I Q}=.005$ (although it is close)
- We can reject return to schooling of $3.5 \%$ as being too low, but also $7 \%$ is too high
- Just as with hypothesis testing, these Cls are only valid under CLM assumptions. If we have omitted key variables, $\hat{\beta}_{j}$ is biased. If error variance is not constant, standard errors are improperly computed


## Your turn

- What is a consequence of using the invalid confidence interval (say, 95\%)?
- $\mathrm{A}: \mathrm{Cl}$ is too wide
- $\mathrm{B}: \mathrm{Cl}$ is too narrow
- C: $95 \%$ confidence level is wrong
- D: Estimator $\hat{\beta}_{j}$ is biased

Testing a linear restriction involving many parameters (Wooldridge, Ch. 4.4)

## Testing linear restriction

- So far, we discussed hypothesis testing only on parameter $\beta_{j}$. But some hypotheses involve many parameters
- For example, mother and father's education have same effects on $\log ($ wage $)$ ? Based on WAGE2.dta, consider

$$
\begin{aligned}
\log (\text { wage })= & \beta_{0}+\beta_{1} \text { meduc }+\beta_{2} \text { feduc } \\
& +\beta_{3} \text { educ }+\beta_{4} \text { exper }+u
\end{aligned}
$$

$$
\begin{aligned}
& H_{0}: \beta_{1}=\beta_{2} \\
& H_{1}: \beta_{1} \neq \beta_{2}
\end{aligned}
$$

## Test statistic

- Remember general way to construct $t$ statistic

$$
t=\frac{\text { estimate }- \text { hypothesized value }}{\text { standard error }}
$$

- By OLS estimates $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$,

$$
t=\frac{\hat{\beta}_{1}-\hat{\beta}_{2}}{\operatorname{se}\left(\hat{\beta}_{1}-\hat{\beta}_{2}\right)}
$$

- Problem: Stata gives us $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ and their standard errors, but that is not enough to obtain $\operatorname{se}\left(\hat{\beta}_{1}-\hat{\beta}_{2}\right)$


## Your turn

- Consider two random variables $z_{1}$ and $z_{2}$. Which is correct expression for $\operatorname{Var}\left(z_{1}+z_{2}\right)$ ?
- A: $\operatorname{Var}\left(z_{1}+z_{2}\right)=\operatorname{Var}\left(z_{1}\right)+\operatorname{Var}\left(z_{2}\right)$
- B: $\operatorname{Var}\left(z_{1}+z_{2}\right)=\operatorname{Var}\left(z_{1}\right)+\operatorname{Var}\left(z_{2}\right)+\operatorname{Cov}\left(z_{1}, z_{2}\right)$
- C: $\operatorname{Var}\left(z_{1}+z_{2}\right)=\operatorname{Var}\left(z_{1}\right)+\operatorname{Var}\left(z_{2}\right)-\operatorname{Cov}\left(z_{1}, z_{2}\right)$
- D: $\operatorname{Var}\left(z_{1}+z_{2}\right)=\operatorname{Var}\left(z_{1}\right)+\operatorname{Var}\left(z_{2}\right)+2 \operatorname{Cov}\left(z_{1}, z_{2}\right)$
- Note

$$
\operatorname{Var}\left(\hat{\beta}_{1}-\hat{\beta}_{2}\right)=\operatorname{Var}\left(\hat{\beta}_{1}\right)+\operatorname{Var}\left(\hat{\beta}_{2}\right)-2 \operatorname{Cov}\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right)
$$

- Standard error is estimate of its square root

$$
\operatorname{se}\left(\hat{\beta}_{1}-\hat{\beta}_{2}\right)=\left\{\left[\operatorname{se}\left(\hat{\beta}_{1}\right)\right]^{2}+\left[\operatorname{se}\left(\hat{\beta}_{2}\right)\right]^{2}-2 s_{12}\right\}^{1 / 2}
$$

where $s_{12}$ is estimate of $\operatorname{Cov}\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right)$. This is the piece we are missing

- Stata will report $s_{12}$ if we ask, but calculating $\operatorname{se}\left(\hat{\beta}_{1}-\hat{\beta}_{2}\right)$ is cumbersome. It is easier to use the command lincom
- There is also trick of rewriting the model (see Ch. 4.4)


## Example (WAGE2.dta)

. reg lwage meduc feduc educ exper

| Source | SS | df | MS |
| ---: | :---: | ---: | :---: |
| Model <br> Residual | 20.0299189 | 4 | 5.00747974 |
| Total | 126.781997 | 717 | .148928866 |


| Number of obs | $=722$ |
| ---: | :--- | ---: |
| F( 4, 717) | $=33.62$ |
| Prob $>$ F | $=0.0000$ |
| R-squared | $=0.1579$ |
| Adj R-squared | $=0.1533$ |
| Root MSE | $=.38591$ |


| lwage | Coef. | Std. Err. | t | $\mathrm{P}>\|\mathrm{t}\|$ | [95\% Conf. Interval] |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| meduc | .0116931 | .0063125 | 1.85 | 0.064 | -.0007001 | .0240864 |
| feduc | .011543 | .0055606 | 2.08 | 0.038 | .000626 | .02246 |
| educ | .0653767 | .0077995 | 8.38 | 0.000 | .0500641 | .0806892 |
| exper | .0233539 | .0037799 | 6.18 | 0.000 | .0159329 | .0307749 |
| _cons | 5.397237 | .1261321 | 42.79 | 0.000 | 5.149604 | 5.644869 |

- Note that $\hat{\beta}_{\text {meduc }}-\hat{\beta}_{\text {feduc }}=.0117-.0115=.0002$, so difference is very small
. lincom meduc - feduc
( 1 ) meduc - feduc $=0$

| lwage | Coef. | Std. Err. | t | $\mathrm{P}>\|\mathrm{t}\|$ | [95\% Conf. Interval] |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $(1)$ | .0001502 | .0102829 | 0.01 | 0.988 | -.020038 | .0203384 |

- Two-sided $p$-value is .988. Obviously cannot reject $H_{0}: \beta_{\text {meduc }}=\beta_{\text {feduc }}$
- Of course, nothing changes (except sign of estimate) if we use $\beta_{\text {feduc }}-\beta_{\text {meduc }}$

Testing multiple linear restrictions
(Wooldridge, Ch. 4.5)

## Testing joint hypotheses

- $t$ test allows us to test single hypothesis, whether it involves one or more than one parameter
- But we sometimes want to test more than one hypothesis
- Generally, it is not valid to look at individual $t$ statistics. We need statistic used to test joint hypotheses


## Example: Major league baseball salaries (MLB1.dta)

- Consider the model

$$
\begin{aligned}
\log (\text { salary })= & \beta_{0}+\beta_{1} \text { years }+\beta_{2} \text { gamesyr }+\beta_{3} \text { bavg } \\
& +\beta_{4} \text { hrunsyr }+\beta_{5} \text { rbisyr }+u
\end{aligned}
$$

. des salary years gamesyr bavg hrunsyr rbisyr

| variable name | storage type | display <br> format | value <br> label | variable label |
| :---: | :---: | :---: | :---: | :---: |
| salary | float | \%9.0g |  | 1993 season salary |
| years | byte | $\% 9.0 \mathrm{~g}$ |  | years in major leagues |
| gamesyr | float | $\% 9.0 \mathrm{~g}$ |  | games per year in league |
| bavg | float | \%9.0g |  | career batting average |
| hrunsyr | float | $\% 9.0 \mathrm{~g}$ |  | home runs per year |
| rbisyr | float | $\% 9.0 \mathrm{~g}$ |  | rbis per year |

- $H_{0}$ : Once we control for experience (years) and amount played (gamesyr), actual performance has no effect on salary

$$
H_{0}: \beta_{3}=0, \beta_{4}=0, \beta_{5}=0
$$

- To test $H_{0}$, we need joint (multiple) hypotheses test
- In this case, we only consider alternative
$H_{1}: H_{0}$ is not true
i.e. at least one of $\beta_{3}, \beta_{4}$ and $\beta_{5}$ is different from zero
- One-sided alternatives (where, say, each $\beta$ is positive) are hard to deal with for multiple restrictions. So, we focus on two-sided alternative
. reg lsalary years gamesyr bavg hrunsyr rbisyr

| Source | SS | df | MS | Number of obs $=$ | 353 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | F( 5, 347) = | 117.06 |
| Model | 308.989208 | 5 | 61.7978416 | Prob > F | 0.0000 |
| Residual | 183.186327 | 347 | . 527914487 | R-squared | 0.6278 |
|  |  |  |  | Adj R-squared $=$ | 0.6224 |
| Total | 492.175535 | 352 | 1.39822595 | Root MSE | . 72658 |


| lsalary | Coef. | Std. Err. | t | $\mathrm{P}>\|\mathrm{t}\|$ | [95\% Conf. Interval] |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| years | .0688626 | .0121145 | 5.68 | 0.000 | .0450355 | .0926898 |
| gamesyr | .0125521 | .0026468 | 4.74 | 0.000 | .0073464 | .0177578 |
| bavg | .0009786 | .0011035 | 0.89 | 0.376 | -.0011918 | .003149 |
| hrunsyr | .0144295 | .016057 | 0.90 | 0.369 | -.0171518 | .0460107 |
| rbisyr | .0107657 | .007175 | 1.50 | 0.134 | -.0033462 | .0248776 |
| _cons | 11.19242 | .2888229 | 38.75 | 0.000 | 10.62435 | 11.76048 |

- None of three performance variables is statistically significant, even though estimates are all positive
- Question: By these insignificant $t$ statistics, should we conclude that none of bavg, hrunsyr, and rbisyr affects baseball player salaries? No. This would be a mistake
- Because of severe multicollinearity (sample correlation between hrunsyr and rbisyr is about .89), individual coefficients, especially on hrunsyr and rbisyr, are imprecisely estimated. So we need a joint test


## Construct F statistic

- In the general model

$$
y=\beta_{0}+\beta_{1} x_{1}+\cdots+\beta_{k} x_{k}+u
$$

we want to test that the last $q$ variables can be excluded

$$
H_{0}: \beta_{k-q+1}=0, \ldots, \beta_{k}=0
$$

- Original model is called unrestricted model. When we impose $H_{0}$, we get

$$
y=\beta_{0}+\beta_{1} x_{1}+\cdots+\beta_{k-q} x_{k-q}+u
$$

which is called restricted model

- Denote SSR from unrestricted and restricted models by $S S R_{u r}$ and $S S R_{r}$, respectively. We construct test statistic by comparing $S S R_{u r}$ and $S S R_{r}$
- We know that SSR never decreases when regressors are dropped, i.e.

$$
S S R_{r} \geq S S R_{u r}
$$

- We ask: does SSR increase enough to conclude the restrictions by $H_{0}$ are false?
- F statistic does degrees of freedom adjustment. In general,

$$
F=\frac{\left(S S R_{r}-S S R_{u r}\right) /\left(d f_{r}-d f_{u r}\right)}{S S R_{u r} / d f_{u r}}=\frac{\left(S S R_{r}-S S R_{u r}\right) / q}{S S R_{u r} /(n-k-1)}
$$

where $q$ is number of exclusion restrictions imposed under null and $k$ is number of regressors in unrestricted model (in baseball example, $q=3$ and $k=5$ )

## Rejection rule

- Note that $F \geq 0$ and rejection rule is of the form

$$
F>c
$$

where $c$ is appropriately chosen critical value

- We obtain $c$ using (hard to show) fact that, under $H_{0}$ ( $q$ exclusion restrictions)

$$
F \sim F_{q, n-k-1}
$$

i.e. $F$ distribution with $(q, n-k-1)$ degrees of freedom

- Terminology

$$
\begin{aligned}
q & =\text { numerator } \mathbf{d f}=d f_{r}-d f_{u r} \\
n-k-1 & =\text { denominator } \mathbf{d f}=d f_{u r}
\end{aligned}
$$

- Tables G.3a, G.3b, and G.3c contain critical values for $10 \%, 5 \%$, and $1 \%$ significance levels
- Suppose $q=3$ and $n-k-1=d f_{u r}=60$. Then $5 \%$ critical value is 2.76



## Example (MB1.dta)

- In MLB example with $n=353, k=5$, and $q=3$, we have numerator $\mathrm{df}=3$, denominator $\mathrm{df}=347$. Because the denominator df is above 120 , we use " $\infty$ " entry. $10 \% \mathrm{cv}$ is $2.08,5 \% \mathrm{cv}$ is 2.60 , and $1 \% \mathrm{cv}$ is 3.78
- As with $t$ testing, it is better to compute $p$-value, which is reported by Stata after every test command
- F statistic for excluding bavg, hrunsyr, and rbisyr from the model is 9.55. This is well above $1 \%$ critical value, so we reject at $1 \%$ level. In fact, to four decimal places, $p$-value is zero
- We say that bavg, hrunsyr, and rbisyr are jointly statistically significant
- $F$ statistic does not tell us which of the coefficients are different from zero. And $t$ statistics do not help much in this example
. reg lsalary years gamesyr bavg hrunsyr rbisyr

| Source | SS | df | MS |
| ---: | :---: | ---: | :---: |
| Model <br> Residual | 308.989208 | 5 | 61.7978416 |
| Total | 492.1756327 | 347 | .527914487 |
| 352 | 1.39822595 |  |  |


| Number of obs | $=353$ |
| ---: | ---: | ---: |
| F $(5,347)$ | $=117.06$ |
| Prob $>$ F | $=0.0000$ |
| R-squared | $=0.6278$ |
| Adj R-squared | $=0.6224$ |
| Root MSE | $=.72658$ |


| lsalary | Coef. | Std. Err. | t | $\mathrm{P}>\|\mathrm{t}\|$ | [95\% Conf. Interval] |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| years | .0688626 | .0121145 | 5.68 | 0.000 | .0450355 | .0926898 |
| gamesyr | .0125521 | .0026468 | 4.74 | 0.000 | .0073464 | .0177578 |
| bavg | .0009786 | .0011035 | 0.89 | 0.376 | -.0011918 | .003149 |
| hrunsyr | .0144295 | .016057 | 0.90 | 0.369 | -.0171518 | .0460107 |
| rbisyr | .0107657 | .007175 | 1.50 | 0.134 | -.0033462 | .0248776 |
| _cons | 11.19242 | .2888229 | 38.75 | 0.000 | 10.62435 | 11.76048 |

. test bavg hrunsyr rbisyr
(1) bavg $=0$
(2) hrunsyr $=0$
(3) rbisyr $=0$

```
F( 3, 347) = 9.55
    Prob > F = 0.0000
```


## $R^{2}$ form of $F$ statistic

- It is useful to be able to compute $F$ statistic using standard output
- $R^{2}$ is reported most of the time, unlike $S S R$. $F$ statistic for exclusion restrictions can be computed entirely from $R^{2}$ for restricted and unrestricted models
- Key: Because same dependent variable is used

$$
\begin{aligned}
S S R_{r} & =\left(1-R_{r}^{2}\right) S S T \\
S S R_{u r} & =\left(1-R_{u r}^{2}\right) S S T
\end{aligned}
$$

- Simple algebra shows

$$
F=\frac{\left(R_{u r}^{2}-R_{r}^{2}\right) / q}{\left(1-R_{u r}^{2}\right) /(n-k-1)}
$$

- Note: $R_{u r}^{2} \geq R_{r}^{2}$ which implies $F \geq 0$


## F statistic for overall significance of regression

. reg ecolbs ecoprc regprc hhsize faminc age educ

| Source | SS | $d f$ | MS |
| ---: | ---: | ---: | :---: |
| Model <br> Residual | $\mathbf{1 6 9 . 0 9 9 0 5 2}$ | $\mathbf{4 0 3 5 . 0 3 7 7 7}$ | 653 |
| Total | 4204.13682 | 659 | 6.3795703 |


| Number of obs | $=660$ |  |
| :--- | :--- | ---: |
| F $(6$, | $653)$ | $=\mathbf{4 . 5 6}$ |
| Prob $>$ F | $=0.0002$ |  |
| R-squared | $=\mathbf{0 . 0 4 0 2}$ |  |
| Adj R-squared | $=\mathbf{0 . 0 3 1 4}$ |  |
| Root MSE | $=\mathbf{2 . 4 8 5 8}$ |  |


| ecolbs | Coef. | Std. Err. | t | $\mathrm{P}>\|\mathrm{t}\|$ | [95\% Conf. Interval] |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| ecoprc | -2.861237 | .5919913 | -4.83 | 0.000 | -4.023673 | -1.6988 |
| regprc | 3.006077 | .7123078 | 4.22 | 0.000 | 1.607387 | 4.404767 |
| hhsize | .0630935 | .0677804 | 0.93 | 0.352 | -.0700003 | .1961874 |
| faminc | .0021952 | .0028653 | 0.77 | 0.444 | -.0034311 | .0078216 |
| age | .0013894 | .0067634 | 0.21 | 0.837 | -.0118914 | .0146701 |
| educ | .0343134 | .0453141 | 0.76 | 0.449 | -.0546655 | .1232923 |
| _cons | 1.05677 | .8926501 | 1.18 | 0.237 | -.6960404 | 2.809581 |

- $F$ statistic in upper right corner of output tests very special null hypothesis. In the model

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots+\beta_{k} x_{k}+u
$$

the null is that all slope coefficients are zero

$$
H_{0}: \beta_{1}=0, \ldots, \beta_{k}=0
$$

- This means none of $x_{j}$ 's helps to explain $y$
- If we cannot reject this null, we find no factors that explain $y$
- For this test, $R_{r}^{2}=0$ (no explanatory variables under $H_{0}$ ), and $R_{u r}^{2}=R^{2}$ from the regression. So, $F$ statistic is

$$
F=\frac{R^{2} / k}{\left(1-R^{2}\right) /(n-k-1)}=\frac{R^{2}}{\left(1-R^{2}\right)} \cdot \frac{(n-k-1)}{k}
$$

i.e. $F$ is directly related to $R^{2}$. As $R^{2}$ increases, so does $F$

- Increasing $n$ increases $F$. Increasing $k$ decreases $F$


## Dummy variables <br> (Wooldridge, Ch. 7)

## Single dummy variable

- For example

$$
\text { wage }=\beta_{0}+\delta_{0} \text { female }+u
$$

- Under SLR. $4 E(u \mid$ female $)=0$,

$$
E(\text { wage } \mid \text { female })=\beta_{0}+\delta_{0} \text { female }
$$

- Average wage for men is $\beta_{0}$, average wage for women is $\beta_{0}+\delta_{0}$, and $\delta_{0}$ is difference in average wage between women and men
- Inference methods in Ch. 4 directly apply


## Interactions among dummy variables

- For two dummy variables, say female and married, we may consider

$$
\text { wage }=\beta_{0}+\beta_{1} \text { female }+\beta_{2} \text { married }+\beta_{3} \text { female } \cdot \text { married }+u
$$

which can estimate average wage for four categories (single male, single female, married male, married female)

- Interaction with quantitative variable provides slope dummy: e.g.

$$
\text { wage }=\beta_{0}+\beta_{1} \text { female }+\beta_{2} \text { exper }+\beta_{3} \text { female } \cdot \text { exper }+u
$$

- Again inference methods in Ch. 4 directly apply


## Testing for differences in regression functions across groups

- We necessarily get same estimated intercepts and slopes if we estimate regressions separately for men and women
- Null hypothesis that there is no difference in wage between men and women at same levels of experience is

$$
H_{0}: \beta_{1}=0, \beta_{3}=0
$$

which can be tested by F-test

- This is a version of Chow test for equality of regression functions across two groups. We test joint significance of dummy variable defining groups as well as interaction terms


## Chow test

- In general $k$ variable case, we can define dummy variable $w$ indicating two groups. Then

$$
\begin{aligned}
y= & \beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots+\beta_{k} x_{k} \\
& +\delta_{0} w+\delta_{1} w \cdot x_{1}+\delta_{2} w \cdot x_{2}+\ldots+\delta_{k} w \cdot x_{k}+u \\
& H_{0}: \delta_{0}=0, \delta_{1}=0, \delta_{2}=0, \ldots, \delta_{k}=0
\end{aligned}
$$

for $k+1$ restrictions

- Do $F$ test for $k+1$ exclusion restrictions
- Chow test statistic often strongly rejects because of $\delta_{0} \neq 0$. So it is often of interest to allow $\delta_{0} \neq 0$ and just test equality of the slopes (by $F$ test)

$$
H_{0}^{S}: \delta_{1}=0, \delta_{2}=0, \ldots, \delta_{k}=0
$$

