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Introduction
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Recap

So far, what do we know about regression model?

MLR.1: y = β0 + β1x1 + · · ·+ βkxk + u

MLR.2: random sampling from population

MLR.3: no perfect collinearity in sample

MLR.4: E (u|x1, . . . , xk) = E (u) = 0 (exogenous regressor)

MLR.5: Var(u|x1, . . . , xk) = Var(u) = σ2 (homoskedasticity)
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(1) Algebraic properties of OLS estimators for any sample, regression
anatomy formula, goodness-of-fit R2, and interpretation of OLS
regression line

(2) Unbiasedness of OLS under MLR.1-4 and omitted variable bias
(failure of MLR.4)

(3) Formula for Var(β̂j |X) under MLR.1-5
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Sampling distributions of OLS estimators
(Wooldridge, Ch. 4.1)
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Testing hypotheses on βj

We now want to test hypotheses about βj . Hypothesise that βj
takes certain value, then use data to determine whether to reject the
hypothesis or not

For example, based on ATTEND.dta

final = β0 + β1missed + β2priGPA + β3ACT + u

where ACT is achievement test score. Null hypothesis that missing
lecture has no effect on final exam performance (after controlling for
prior GPA and ACT score) is

H0 : β1 = 0
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What we know about β̂j

To test hypotheses about βj , we need to know more than just mean

and variance of β̂j

Under MLR.1-4, we can compute expected value as

E (β̂j) = βj

Under MLR.1-5, we know variance is

Var(β̂j |X) =
σ2

SSTj(1− R2
j )

and σ̂2 = SSR/(n − k − 1) is an unbiased estimator of σ2
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What we want: Sampling distribution of β̂j

Hypothesis testing requires entire sampling distribution of β̂j . Even
under MLR.1-5, sample distributions can be virtually anything

Write

β̂j = βj +
n∑

i=1

wijui

where wij ’s are functions of X

Conditional on X, the distribution of β̂j is determined by that of
(u1, . . . , un)
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Assumption MLR.6

Assumption MLR.6 (Normality)

Error term u is independent of (x1, . . . , xk) and is normally
distributed with mean zero and variance σ2

u ∼ Normal(0, σ2)

MLR.6 implies MLR.4: E (u|x1, . . . , xk) = E (u) = 0

Also MLR.6 implies MLR.5: Var(u|x1, . . . , xk) = Var(u) = σ2

Now MLR.6 imposes full independence between u and (x1, . . . , xk)
(not just mean and variance independence)

By MLR.6, we now impose very specific distributional assumption for
u: the familiar bell-shaped curve
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Your turn

Suppose
z ∼ Normal(E (z),Var(z))

for E (z) 6= 0

Which is true?

A: z−E(z)
Var(z) ∼ Normal(0, 1)

B: z−E(z)√
Var(z)

∼ Normal(0, 1)

C: z
Var(z) ∼ Normal(0, 1)
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Important fact about normal random variables

Linear combination of normal random variables is also normally
distributed

Because ui ’s are independent and identically distributed (called iid) as
Normal(0, σ2) and β̂j = βj +

∑n
i=1 wijui , we have

β̂j |X ∼ Normal
(
βj ,Var(β̂j |X)

)
where X are data for all regressors and we already know the formula
for Var(β̂j |X)

Var(β̂j |X) =
σ2

SSTj(1− R2
j )
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Theorem: Normal sampling distribution

Under Assumptions MLR.1-6

β̂j |X ∼ Normal
(
βj ,Var(β̂j |X)

)
and so

β̂j − βj
sd(β̂j)

∼ Normal(0, 1)

The second result follows from property of normal distribution: if
W ∼ Normal , then a + bW ∼ Normal for constants a and b
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Under MLR.1-5, standardized random variable

β̂j − βj
sd(β̂j)

always has zero mean and variance one. Under MLR.6, it is also
normally distributed

Notice that second result holds even when we do not condition on
X
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Testing hypotheses about a single population parameter
(Wooldridge, Ch. 4.2)
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Obtaining a test statistic

We cannot directly use the result

β̂j − βj
sd(β̂j)

∼ Normal(0, 1)

to test hypotheses about βj because sd(β̂j) depends on unknown
σ =

√
Var(u)

So replace σ with σ̂ (i.e. replace sd(β̂j) with standard error se(β̂j))
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Theorem: t distribution for standardised estimator

Under Assumptions MLR. 1-6

β̂j − βj
se(β̂j)

∼ tn−k−1 = tdf

We will not prove this as the argument is somewhat involved

Due to replacement of σ with σ̂, the distribution changes from
standard normal to t distribution
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t distribution

t distribution also has bell shape but is more spread out than
Normal(0, 1)

E (tdf ) = 0 if df > 1

Var(tdf ) =
df

df − 2
> 1 if df > 2

If df = 10, then Var(tdf ) = 1.25 (25% larger than variance of
Normal(0, 1))

If df = 120, then Var(tdf ) ≈ 1.017 (only 1.7% larger)

As df →∞
tdf → Normal(0, 1)



18

Graph of N(0, 1) and t6
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t statistic

We use result on t distribution to test null hypothesis that xj has no
partial effect on y

H0 : βj = 0

To test H0 : βj = 0, we use t statistic (or t ratio)

tβ̂j =
β̂j

se(β̂j)

We measure how far β̂j is from zero relative to its standard error

Because se(β̂j) > 0, tβ̂j has same sign as β̂j . To test H0 : βj = 0, we

need alternative hypothesis
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Testing against one-sided alternatives

First consider the alternative

H1 : βj > 0

which means the null is effectively

H0 : βj ≤ 0

If we reject βj = 0 then reject any βj < 0 too

We often just state H0 : βj = 0 and act like we do not care about
negative values
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If β̂j < 0, it provides no evidence against H0 in favor of H1 : βj > 0

If β̂j > 0, the question is: How big does tβ̂j =
β̂j

se(β̂j )
have to be to

conclude H0 is not a credible hypothesis?
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Traditional approach to hypothesis testing

(1) Choose null hypothesis H0 : βj = 0 (or H0 : βj ≤ 0)

(2) Choose alternative hypothesis H1 : βj > 0

(3) Choose significance level for the test. That is, probability of
rejecting H0 when it is in fact true (Type I Error). Suppose we use
5%, so probability of committing Type I error is .05

(4) Choose critical value c so that rejection rule

tβ̂j > c

leads to 5% level test
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How to get critical value

Key: Under the null hypothesis H0 : βj = 0

tβ̂j ∼ tn−k−1 = tdf

Use this to obtain critical value c

Suppose df = 28 and 5% significance level. Critical value is
c = 1.701 (from Table G.2)

Following picture shows how to find c for one-tailed test
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Rejection rule

So, with df = 28, rejection rule for H0 : βj = 0 against H1 : βj > 0,
at 5% level, is

tβ̂j > 1.701

We need t statistic greater than 1.701 to conclude there is enough
evidence against H0

If tβ̂j ≤ 1.701, we fail to reject H0 against H1 at 5% significance level
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Different significance level

Suppose df = 28, but we want to carry out test at different
significance level (often 10% or 1% level)

c.10 = 1.313

c.05 = 1.701

c.01 = 2.467

If we want to reduce probability of Type I error, we must increase
critical value (so we reject the null less often)

If we reject at, say, 1% level, then we must also reject at any larger
level

If we fail to reject at, say, 10% level (i.e. tβ̂j ≤ 1.313), then we will

fail to reject at any smaller level
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With large sample sizes, we can use critical values from standard
normal distribution. These are df =∞ entry in Table G.2

c.10 = 1.282

c.05 = 1.645

c.01 = 2.326

which we can round to 1.28, 1.65, and 2.33, respectively. The value
1.65 is especially common for one-tailed test
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Example: Does ACT score help to predict college GPA
(GPA1.dta)

Model: colGPA = β0 + βhsGPAhsGPA + βACTACT + u
Null hypothesis is H0 : βACT = 0

                                                                              
       _cons     1.286328   .3408221     3.77   0.000      .612419    1.960237
         ACT      .009426   .0107772     0.87   0.383    -.0118838    .0307358
       hsGPA     .4534559   .0958129     4.73   0.000     .2640047    .6429071
                                                                              
      colGPA        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

       Total    19.4060994   140  .138614996           Root MSE      =  .34032
                                                       Adj R-squared =  0.1645
    Residual    15.9824444   138  .115814814           R-squared     =  0.1764
       Model    3.42365506     2  1.71182753           Prob > F      =  0.0000
                                                       F(  2,   138) =   14.78
      Source         SS       df       MS              Number of obs =     141

. reg colGPA hsGPA ACT
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From output, β̂ACT = .0094 and tACT = .87. Even at 10% level
(c = 1.28), we cannot reject H0 against H1 : βACT > 0

Because we fail to reject H0 : βACT = 0, we say that “β̂ACT is
statistically insignificant at 10% level against one-sided alternative”

Note that estimated effect of ACT is also small. Three more points
(slightly more than one standard deviation) only predicts
.0094(3) ≈ .028 increase in colGPA

By contrast, β̂hsGPA = .453 is large in practical sense and
thsGPA = 4.73 is very large. So “β̂hsGPA is statistically significant” at
very small significance levels
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Your turn

Which of the following can cause the usual t test above invalid?
(a) Heteroskedasticity
(b) Correlation coefficient of .95 between two regressors
(c) Omitting an important variable

A: All of them can invalidate
B: Only (a) can invalidate
C: Only (c) can invalidate
D: Two of them can invalidate
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Again, Your turn

What is a consequence of using the invalid t test with 5% significance
level, say?

A: Critical value is too large
B: Critical value is too small
C: 5% significance level is wrong
D: Conclusion (reject or not) is always wrong
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Negative one-sided alternative

For negative one-sided alternative

H1 : βj < 0

we must see significantly negative value for t statistic to reject
H0 : βj = 0 in favor of H1 : βj < 0

So the rejection rule is
tβ̂j < −c

where c is chosen in the same way as in positive case

With df = 18 and 5% level, critical value is c = −1.734, so rejection
rule is

tβ̂j < −1.734
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Testing against two-sided alternatives

Sometimes we do not know ahead of time whether a variable
definitely has positive or negative effect

Even in the example

final = β0 + β1missed + β2priGPA + β3ACT + u

it is conceivable that missing class helps final exam performance
(extra time is used for studying, say)

In this case, null and alternative are

H0 : βj = 0

H1 : βj 6= 0
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Rejection rule

Now we reject if β̂j is sufficiently large in magnitude either positive or
negative

We again use t statistic tβ̂j =
β̂j

se(β̂j )
, but now rejection rule is

|tβ̂j | > c

This results in two-tailed test and critical values are given by Table
G.2

For example, if df = 25 and 5% level, two-tailed c is 2.06 (97.5-th
percentile in t25 distribution)

On the other hand, one-tailed c is 1.71 (95-th percentile in t25
distribution)
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Example: Factors affecting math pass rates (MEAP93.dta)

Regress from math10 on lnchprg , lsalary , enroll

. reg  math10 lnchprg lsalary enroll

enroll          int    %9.0g                  school enrollment
lsalary         float  %9.0g                  log(salary)
lnchprg         float  %9.0g                  perc of studs in sch lnch prog
math10          float  %9.0g                  perc studs passing MEAP math
                                                                                   
variable name   type   format      label      variable label
              storage  display     value

. des math10 lnchprg lsalary enroll

A priori, we might expect lnchprg to has negative effect (it is
essentially school-level poverty rate) and lsalary to has positive effect.
But we can still test against two-sided alternative to avoid specifying
alternative ahead of time. enroll is clearly ambiguous

Since n = 408, we use standard normal critical values: c.10 = 1.65,
c.05 = 1.96, and c.01 = 2.58
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       _cons    -50.69248   39.03804    -1.30   0.195    -127.4355    26.05057
      enroll    -.0001741   .0001991    -0.87   0.382    -.0005656    .0002173
     lsalary     7.969246    3.75663     2.12   0.034     .5842628    15.35423
     lnchprg    -.2878203   .0380285    -7.57   0.000    -.3625787   -.2130618
                                                                              
      math10        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

       Total    44817.1805   407  110.115923           Root MSE      =  9.5365
                                                       Adj R-squared =  0.1741
    Residual    36741.8404   404  90.9451496           R-squared     =  0.1802
       Model    8075.34004     3  2691.78001           Prob > F      =  0.0000
                                                       F(  3,   404) =   29.60
      Source         SS       df       MS              Number of obs =     408

. reg  math10 lnchprg lsalary enroll
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Coefficients of lnchprg and lsalary have anticipated signs. So we
easily reject H0 : βlnchprg = 0 against H1 : βlnchprg 6= 0. Also we reject
H0 : βlsalary = 0 against H1 : βlsalary 6= 0 at 5% level, but not for 1%
level.

enroll is different. |tenroll | = 0.87 < 1.65, so we fail to reject H0 at
even 10% level
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Your turn

Suppose you do not reject H0 : βj = 0 against two-sided alternative

H1 : βj 6= 0 at the 5 % significance level. Based on this and β̂j > 0,
can we conclude about one-sided test for H̃0 : βj = 0 against
H̃1 : βj > 0 at 5% level?

A: We do not reject H̃0

B: We reject H̃0

C: Not enough information to conclude
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Testing other hypotheses about βj

Testing the null H0 : βj = 0 is by far most common. That is why
Stata automatically reports t statistic for this hypothesis

It is critical to remember that

tβ̂j =
β̂j

se(β̂j)

is only for H0 : βj = 0



42

What if we want to test different null value? For example, in
constant-elasticity consumption function

log(cons) = β0 + β1 log(inc) + β2famsize + β3pareduc + u

we might want to test
H0 : β1 = 1

i.e. income elasticity is one (we are pretty sure that β1 > 0)
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Testing for H0 : βj = aj

More generally, suppose the null is

H0 : βj = aj

where we specify the value aj (usually zero but in above example
aj = 1)

It is easy to extend t statistic

t =
β̂j − aj

se(β̂j)

This t statistic measures how far our estimate β̂j is from the

hypothesized value aj relative to se(β̂j)
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General expression for t test

General expression for t test is

t =
estimate − hypothesized value

standard error

Alternative can be one-sided or two-sided

We choose critical values in exactly same way as before
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Example: Crime and enrollment on college campuses
(CAMPUS.dta)

Bivariate regression

log(crime) = β0 + β1 log(enroll) + u

H0 : β1 = 1

H1 : β1 > 1

enroll          float  %9.0g                  total enrollment
crime           int    %9.0g                  total campus crimes
                                                                                  
variable name   type   format      label      variable label
              storage  display     value

. des crime enroll



46

                                                                              
       _cons     -6.63137    1.03354    -6.42   0.000    -8.683206   -4.579533
     lenroll      1.26976    .109776    11.57   0.000     1.051827    1.487693
                                                                              
      lcrime        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

       Total    183.119479    96  1.90749457           Root MSE      =  .89464
                                                       Adj R-squared =  0.5804
    Residual    76.0358244    95  .800377098           R-squared     =  0.5848
       Model    107.083654     1  107.083654           Prob > F      =  0.0000
                                                       F(  1,    95) =  133.79
      Source         SS       df       MS              Number of obs =      97

. reg lcrime lenroll

We get β̂1 = 1.27. So 1% increase in enrollment is estimated to
increase crime by 1.27% (so more than 1%). Is this estimate
statistically greater than one?
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Although we cannot pull t statistic from output, we can compute it
by hand

t =
(1.270− 1)

.110
≈ 2.45

We have df = 97− 2 = 95. So use df = 120 entry in Table G.2.
Since c.01 = 2.36, we reject at 1% level

Alternatively, we can let Stata do the work using lincom (“linear
combination” command)
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Computing p-values for t tests

In traditional approach for testing, we choose significance level ahead
of time. This can be cumbersome

Plus, it can hide some information. Even if we reject at 5% level with
c.05 = 1.645, the t statistic of 2 and 4 might convey different
information

Instead of fixing level ahead of time, it is better to answer the
following question: Given the observed value of t statistic, what is
the smallest significance level at which we can reject H0?

Such smallest level is known as p-value. It allows us to carry out test
at any level



49

One way to think about p-values is that it uses the observed
statistic as critical value, and then finds significance level of the
test using that critical value

It is most common to report p-values for two-sided alternatives (this
is what Stata does)

For t testing against two-sided alternative

p-value = P(|T | > |t|)

where t is the value of t statistic and T is a random variable with tdf
distribution
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Interpretation of p-value

Perhaps the best way to think about p-values: it is probability of
observing the statistic as extreme as we did if H0 is true

So smaller p-values provide more are evidence against the null. For
example, if p-value = .50, then there is 50% chance of observing t as
large as we did (in absolute value). This is not enough evidence
against H0

If p-value = .001, then the chance of seeing t statistic as extreme as
we did is .1%. We can conclude that we got very rare sample or that
the null hypothesis is highly unlikely
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From
p-value = P(|T | > |t|)

we see that as |t| increases p-value decreases. Large absolute t
statistics are associated with small p-values

Suppose df = 40 and, from our data, we obtain t = 1.85 or
t = −1.85. Then

p-value = P(|T | > 1.85) = 2P(T > 1.85) = 2(.0359) = .0718

where T ∼ t40. Finding actual number requires Stata
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Test by p-value

Given p-value, we can carry out test at any significance level. If α is
chosen level, then

Reject H0 if p-value < α

For example, in previous example we got p-value = .0718. This
means we reject H0 at 10% level but not 5% level. We reject at 8%
but not at 7%

Knowing p-value = .0718 is clearly much better than just saying“I fail
to reject at 5% level”
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Computing p-values for one-sided alternatives

In Stata, two-sided p-values for H0 : βj = 0 are given in the column
labeled “P>|t|”

With caveat, one sided p-value is given by

one-sided p-value =
two-sided p-value

2

We only want the area in one tail, not two tails

The caveat is: estimated coefficient should be in the direction of the
alternative, otherwise one-sided p-value would be above .50
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Example: Factors affecting NBA salaries (NBASAL.dta)

     assists         269    2.408922    2.092986          0       12.6
                                                                      
    rebounds         269    4.401115    2.892573         .5       17.3
      points         269    10.21041    5.900667        1.2       29.8
      avgmin         269    23.97925    9.731177   2.888889   43.08537
       games         269    65.72491    18.85111          3         82
        wage         269    1423.828    999.7741        150       5740
                                                                      
    Variable         Obs        Mean    Std. Dev.       Min        Max

. sum wage games avgmin points rebounds assists

assists         float  %9.0g                  assists per game
rebounds        float  %9.0g                  rebounds per game
points          float  %9.0g                  points per game
avgmin          float  %9.0g                  minutes per game
games           byte   %9.0g                  average games per year
wage            float  %9.0g                  annual salary, thousands $
                                                                                                         
variable name   type   format      label      variable label
              storage  display     value

. des wage games avgmin points rebounds assists
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       _cons     5.648996   .1559075    36.23   0.000      5.34201    5.955982
     assists     .0003665   .0314393     0.01   0.991    -.0615382    .0622712
    rebounds     .0406795   .0229455     1.77   0.077    -.0045007    .0858597
      points     .0363734   .0150945     2.41   0.017     .0066519    .0660949
      avgmin     .0302278   .0130868     2.31   0.022     .0044597     .055996
       games     .0004132    .002682     0.15   0.878    -.0048679    .0056942
                                                                              
       lwage        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

       Total    208.188763   268  .776823743           Root MSE      =   .6696
                                                       Adj R-squared =  0.4228
    Residual    117.918945   263  .448361006           R-squared     =  0.4336
       Model    90.2698185     5  18.0539637           Prob > F      =  0.0000
                                                       F(  5,   263) =   40.27
      Source         SS       df       MS              Number of obs =     269

. reg lwage games avgmin points rebounds assists
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Except for intercept, none of variables is statistically significant at 1%
level against two-sided alternative. The closest is points with p-value
= .017 (One-sided p-value is .017/2 = .0085 < .01, so it is significant
at 1% level against positive one-sided alternative)

avgmin is statistically significant at 5% level because p-value
= .022 < .05

rebounds is statistically significant at 10% level (against two-sided
alternative) because p-value = .077 < .10, but not at 5% level. But
one-sided p-value is .077/2 = .0385

Both games and assists have very small t statistics, which lead to
p-values close to one (for example, for assists, p-value = .991). These
variables are statistically insignificant
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Practical versus statistical significance

t testing is purely about statistical significance. It does not directly
speak to the issue of whether a variable has practically or
economically large effect

Practical or economic significance depends on the size (and sign)
of β̂j

Statistical significance depends on tβ̂j

It is possible that although the estimate β̂j indicates practically large
effect, the estimate is so imprecise that it is statistically insignificant.
This is especially an issue with small data sets

Even more importantly, it is possible to get estimates that are
statistically significant but are not practically large. This can happen
with very large data sets
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Confidence intervals
(Wooldridge, Ch. 4.3)
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Confidence interval

Rather than just testing hypotheses about parameters it is also useful
to construct confidence intervals (CIs, also known as interval
estimators)

Instead of so-called looking at a “point estimator” as we have done so
far, we now consider a range of values as our estimator for an
unknown population parameter. It takes into account the uncertainty
associated with a point estimator

We will only consider CIs of the form

β̂j ± c · se(β̂j)

where c > 0 is chosen based on confidence level
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We will use 95% confidence level, in which case c comes from 97.5
percentile in tdf distribution. In other words, c is 5% critical value
against two-sided alternative

Stata automatically reports at 95% CI for each parameter, based on t
distribution using appropriate df
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Example (NBASAL.dta)

                                                                              
       _cons     5.648996   .1559075    36.23   0.000      5.34201    5.955982
     assists     .0003665   .0314393     0.01   0.991    -.0615382    .0622712
    rebounds     .0406795   .0229455     1.77   0.077    -.0045007    .0858597
      points     .0363734   .0150945     2.41   0.017     .0066519    .0660949
      avgmin     .0302278   .0130868     2.31   0.022     .0044597     .055996
       games     .0004132    .002682     0.15   0.878    -.0048679    .0056942
                                                                              
       lwage        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

       Total    208.188763   268  .776823743           Root MSE      =   .6696
                                                       Adj R-squared =  0.4228
    Residual    117.918945   263  .448361006           R-squared     =  0.4336
       Model    90.2698185     5  18.0539637           Prob > F      =  0.0000
                                                       F(  5,   263) =   40.27
      Source         SS       df       MS              Number of obs =     269

. reg lwage games avgmin points rebounds assists
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Notice how three estimates that are not statistically different from
zero at 5% level – games, rebounds, and assists – all have 95% CIs
that include zero. For example, 95% CI for βrebounds is

[−.0045, .0859]

By contrast, 95% CI for βpoints is

[.0067, .0661]

which excludes zero
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Interpretation of CI

Properly interpreting CI is a bit tricky. We often see statements like
“there is 95% chance that βpoints is in interval [.0067, .0661].” This is
incorrect. βpoints is some fixed value, and it either is or is not in the
interval

Correct way to interpret CI is to remember that the endpoints
β̂j ± c · se(β̂j) change with each sample (i.e. endpoints are random
outcomes)

What 95% CI means is that in hypothetically repeated random
sampling, the interval we compute using the rule β̂j ± c · se(β̂j)
will include the value βj in 95% of cases. But for a particular
sample we will never know whether βj is in the interval or not
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CI and hypothesis testing

By 95% CI for βj , we can test any null value against two-sided
alternative at 5% level. Consider

H0 : βj = aj

H1 : βj 6= aj

(1) If aj is in 95% CI, then we fail to reject H0 at 5% level

(2) If aj is not in 95% CI then we reject H0 in favor of H1 at 5% level
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Example (WAGE2.dta)

                                                                              
       _cons     5.108905   .1264354    40.41   0.000     4.860744    5.357066
       meduc     .0126417   .0049645     2.55   0.011     .0028977    .0223857
       exper     .0222246   .0034192     6.50   0.000     .0155134    .0289357
          IQ     .0054188   .0010253     5.28   0.000     .0034064    .0074312
        educ     .0547499   .0077049     7.11   0.000      .039627    .0698727
                                                                              
       lwage        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

       Total     149.36104   856  .174487197           Root MSE      =  .37905
                                                       Adj R-squared =  0.1766
    Residual    122.411347   852   .14367529           R-squared     =  0.1804
       Model     26.949693     4  6.73742325           Prob > F      =  0.0000
                                                       F(  4,   852) =   46.89
      Source         SS       df       MS              Number of obs =     857

. reg lwage educ IQ exper meduc
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95% CI for βIQ is about [.0034, .0074]. So we can reject H0 : βIQ = 0
against two-sided alternative at 5% level. We cannot reject
H0 : βIQ = .005 (although it is close)

We can reject return to schooling of 3.5% as being too low, but also
7% is too high

Just as with hypothesis testing, these CIs are only valid under CLM
assumptions. If we have omitted key variables, β̂j is biased. If error
variance is not constant, standard errors are improperly computed
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Your turn

What is a consequence of using the invalid confidence interval (say,
95%)?

A: CI is too wide
B: CI is too narrow
C: 95% confidence level is wrong
D: Estimator β̂j is biased
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Testing a linear restriction involving many parameters
(Wooldridge, Ch. 4.4)
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Testing linear restriction

So far, we discussed hypothesis testing only on parameter βj . But
some hypotheses involve many parameters

For example, mother and father’s education have same effects on
log(wage)? Based on WAGE2.dta, consider

log(wage) = β0 + β1meduc + β2feduc

+β3educ + β4exper + u

H0 : β1 = β2

H1 : β1 6= β2
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Test statistic

Remember general way to construct t statistic

t =
estimate − hypothesized value

standard error

By OLS estimates β̂1 and β̂2,

t =
β̂1 − β̂2

se(β̂1 − β̂2)

Problem: Stata gives us β̂1 and β̂2 and their standard errors, but that
is not enough to obtain se(β̂1 − β̂2)
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Your turn

Consider two random variables z1 and z2. Which is correct expression
for Var(z1 + z2)?

A: Var(z1 + z2) = Var(z1) + Var(z2)
B: Var(z1 + z2) = Var(z1) + Var(z2) + Cov(z1, z2)
C: Var(z1 + z2) = Var(z1) + Var(z2)− Cov(z1, z2)
D: Var(z1 + z2) = Var(z1) + Var(z2) + 2Cov(z1, z2)
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Note

Var(β̂1 − β̂2) = Var(β̂1) + Var(β̂2)− 2Cov(β̂1, β̂2)

Standard error is estimate of its square root

se(β̂1 − β̂2) = {[se(β̂1)]2 + [se(β̂2)]2 − 2s12}1/2

where s12 is estimate of Cov(β̂1, β̂2). This is the piece we are missing

Stata will report s12 if we ask, but calculating se(β̂1 − β̂2) is
cumbersome. It is easier to use the command lincom

There is also trick of rewriting the model (see Ch. 4.4)
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Example (WAGE2.dta)

                                                                              
       _cons     5.397237   .1261321    42.79   0.000     5.149604    5.644869
       exper     .0233539   .0037799     6.18   0.000     .0159329    .0307749
        educ     .0653767   .0077995     8.38   0.000     .0500641    .0806892
       feduc      .011543   .0055606     2.08   0.038      .000626      .02246
       meduc     .0116931   .0063125     1.85   0.064    -.0007001    .0240864
                                                                              
       lwage        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

       Total    126.811916   721  .175883378           Root MSE      =  .38591
                                                       Adj R-squared =  0.1533
    Residual    106.781997   717  .148928866           R-squared     =  0.1579
       Model    20.0299189     4  5.00747974           Prob > F      =  0.0000
                                                       F(  4,   717) =   33.62
      Source         SS       df       MS              Number of obs =     722

. reg lwage meduc feduc educ exper
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Note that β̂meduc − β̂feduc = .0117− .0115 = .0002, so difference is
very small

                                                                              
         (1)     .0001502   .0102829     0.01   0.988     -.020038    .0203384
                                                                              
       lwage        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

 ( 1)  meduc - feduc = 0

. lincom meduc - feduc

Two-sided p-value is .988. Obviously cannot reject
H0 : βmeduc = βfeduc

Of course, nothing changes (except sign of estimate) if we use
βfeduc − βmeduc
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Testing multiple linear restrictions
(Wooldridge, Ch. 4.5)
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Testing joint hypotheses

t test allows us to test single hypothesis, whether it involves one or
more than one parameter

But we sometimes want to test more than one hypothesis

Generally, it is not valid to look at individual t statistics. We need
statistic used to test joint hypotheses
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Example: Major league baseball salaries (MLB1.dta)

Consider the model

log(salary) = β0 + β1years + β2gamesyr + β3bavg

+β4hrunsyr + β5rbisyr + u

rbisyr          float  %9.0g                  rbis per year
hrunsyr         float  %9.0g                  home runs per year
bavg            float  %9.0g                  career batting average
gamesyr         float  %9.0g                  games per year in league
years           byte   %9.0g                  years in major leagues
salary          float  %9.0g                  1993 season salary
                                                                                           
variable name   type   format      label      variable label
              storage  display     value

. des salary years gamesyr bavg hrunsyr rbisyr
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H0 : Once we control for experience (years) and amount played
(gamesyr), actual performance has no effect on salary

H0 : β3 = 0, β4 = 0, β5 = 0

To test H0, we need joint (multiple) hypotheses test

In this case, we only consider alternative

H1 : H0 is not true

i.e. at least one of β3, β4 and β5 is different from zero

One-sided alternatives (where, say, each β is positive) are hard to deal
with for multiple restrictions. So, we focus on two-sided alternative
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       _cons     11.19242   .2888229    38.75   0.000     10.62435    11.76048
      rbisyr     .0107657    .007175     1.50   0.134    -.0033462    .0248776
     hrunsyr     .0144295    .016057     0.90   0.369    -.0171518    .0460107
        bavg     .0009786   .0011035     0.89   0.376    -.0011918     .003149
     gamesyr     .0125521   .0026468     4.74   0.000     .0073464    .0177578
       years     .0688626   .0121145     5.68   0.000     .0450355    .0926898
                                                                              
     lsalary        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

       Total    492.175535   352  1.39822595           Root MSE      =  .72658
                                                       Adj R-squared =  0.6224
    Residual    183.186327   347  .527914487           R-squared     =  0.6278
       Model    308.989208     5  61.7978416           Prob > F      =  0.0000
                                                       F(  5,   347) =  117.06
      Source         SS       df       MS              Number of obs =     353

. reg lsalary years gamesyr bavg hrunsyr rbisyr
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None of three performance variables is statistically significant, even
though estimates are all positive

Question: By these insignificant t statistics, should we conclude that
none of bavg , hrunsyr , and rbisyr affects baseball player salaries? No.
This would be a mistake

Because of severe multicollinearity (sample correlation between
hrunsyr and rbisyr is about .89), individual coefficients, especially on
hrunsyr and rbisyr , are imprecisely estimated. So we need a joint test
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Construct F statistic

In the general model

y = β0 + β1x1 + · · ·+ βkxk + u

we want to test that the last q variables can be excluded

H0 : βk−q+1 = 0, . . . , βk = 0

Original model is called unrestricted model. When we impose H0,
we get

y = β0 + β1x1 + · · ·+ βk−qxk−q + u

which is called restricted model

Denote SSR from unrestricted and restricted models by SSRur and
SSRr , respectively. We construct test statistic by comparing SSRur

and SSRr
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We know that SSR never decreases when regressors are dropped, i.e.

SSRr ≥ SSRur

We ask: does SSR increase enough to conclude the restrictions by
H0 are false?

F statistic does degrees of freedom adjustment. In general,

F =
(SSRr − SSRur )/(dfr − dfur )

SSRur/dfur
=

(SSRr − SSRur )/q

SSRur/(n − k − 1)

where q is number of exclusion restrictions imposed under null and k
is number of regressors in unrestricted model (in baseball example,
q = 3 and k = 5)
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Rejection rule

Note that F ≥ 0 and rejection rule is of the form

F > c

where c is appropriately chosen critical value

We obtain c using (hard to show) fact that, under H0 (q exclusion
restrictions)

F ∼ Fq,n−k−1

i.e. F distribution with (q, n − k − 1) degrees of freedom
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Terminology

q = numerator df = dfr − dfur

n − k − 1 = denominator df = dfur

Tables G.3a, G.3b, and G.3c contain critical values for 10%, 5%, and
1% significance levels

Suppose q = 3 and n − k − 1 = dfur = 60. Then 5% critical value is
2.76
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Example (MB1.dta)

In MLB example with n = 353, k = 5, and q = 3, we have numerator
df = 3, denominator df = 347. Because the denominator df is above
120, we use “∞” entry. 10% cv is 2.08, 5% cv is 2.60, and 1% cv is
3.78

As with t testing, it is better to compute p-value, which is reported
by Stata after every test command

F statistic for excluding bavg , hrunsyr , and rbisyr from the model is
9.55. This is well above 1% critical value, so we reject at 1% level. In
fact, to four decimal places, p-value is zero

We say that bavg , hrunsyr , and rbisyr are jointly statistically
significant

F statistic does not tell us which of the coefficients are different from
zero. And t statistics do not help much in this example



88

            Prob > F =    0.0000
       F(  3,   347) =    9.55

 ( 3)  rbisyr = 0
 ( 2)  hrunsyr = 0
 ( 1)  bavg = 0

. test bavg hrunsyr rbisyr

                                                                              
       _cons     11.19242   .2888229    38.75   0.000     10.62435    11.76048
      rbisyr     .0107657    .007175     1.50   0.134    -.0033462    .0248776
     hrunsyr     .0144295    .016057     0.90   0.369    -.0171518    .0460107
        bavg     .0009786   .0011035     0.89   0.376    -.0011918     .003149
     gamesyr     .0125521   .0026468     4.74   0.000     .0073464    .0177578
       years     .0688626   .0121145     5.68   0.000     .0450355    .0926898
                                                                              
     lsalary        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

       Total    492.175535   352  1.39822595           Root MSE      =  .72658
                                                       Adj R-squared =  0.6224
    Residual    183.186327   347  .527914487           R-squared     =  0.6278
       Model    308.989208     5  61.7978416           Prob > F      =  0.0000
                                                       F(  5,   347) =  117.06
      Source         SS       df       MS              Number of obs =     353

. reg lsalary years gamesyr bavg hrunsyr rbisyr
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R2 form of F statistic

It is useful to be able to compute F statistic using standard output

R2 is reported most of the time, unlike SSR. F statistic for exclusion
restrictions can be computed entirely from R2 for restricted and
unrestricted models

Key: Because same dependent variable is used

SSRr = (1− R2
r )SST

SSRur = (1− R2
ur )SST
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Simple algebra shows

F =
(R2

ur − R2
r )/q

(1− R2
ur )/(n − k − 1)

Note: R2
ur ≥ R2

r which implies F ≥ 0
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F statistic for overall significance of regression

                                                                              
       _cons      1.05677   .8926501     1.18   0.237    -.6960404    2.809581
        educ     .0343134   .0453141     0.76   0.449    -.0546655    .1232923
         age     .0013894   .0067634     0.21   0.837    -.0118914    .0146701
      faminc     .0021952   .0028653     0.77   0.444    -.0034311    .0078216
      hhsize     .0630935   .0677804     0.93   0.352    -.0700003    .1961874
      regprc     3.006077   .7123078     4.22   0.000     1.607387    4.404767
      ecoprc    -2.861237   .5919913    -4.83   0.000    -4.023673     -1.6988
                                                                              
      ecolbs        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

       Total    4204.13682   659   6.3795703           Root MSE      =  2.4858
                                                       Adj R-squared =  0.0314
    Residual    4035.03777   653  6.17923089           R-squared     =  0.0402
       Model    169.099052     6  28.1831753           Prob > F      =  0.0002
                                                       F(  6,   653) =    4.56
      Source         SS       df       MS              Number of obs =     660

. reg ecolbs ecoprc regprc hhsize faminc age educ
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F statistic in upper right corner of output tests very special null
hypothesis. In the model

y = β0 + β1x1 + β2x2 + ...+ βkxk + u

the null is that all slope coefficients are zero

H0 : β1 = 0, . . . , βk = 0

This means none of xj ’s helps to explain y

If we cannot reject this null, we find no factors that explain y
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For this test, R2
r = 0 (no explanatory variables under H0), and

R2
ur = R2 from the regression. So, F statistic is

F =
R2/k

(1− R2)/(n − k − 1)
=

R2

(1− R2)
· (n − k − 1)

k

i.e. F is directly related to R2. As R2 increases, so does F

Increasing n increases F . Increasing k decreases F
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Dummy variables
(Wooldridge, Ch. 7)
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Single dummy variable

For example
wage = β0 + δ0female + u

Under SLR.4 E (u|female) = 0,

E (wage|female) = β0 + δ0female

Average wage for men is β0, average wage for women is β0 + δ0, and
δ0 is difference in average wage between women and men

Inference methods in Ch. 4 directly apply
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Interactions among dummy variables

For two dummy variables, say female and married , we may consider

wage = β0 + β1female + β2married + β3female ·married + u

which can estimate average wage for four categories (single male,
single female, married male, married female)

Interaction with quantitative variable provides slope dummy: e.g.

wage = β0 + β1female + β2exper + β3female · exper + u

Again inference methods in Ch. 4 directly apply
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Testing for differences in regression functions across groups

We necessarily get same estimated intercepts and slopes if we
estimate regressions separately for men and women

Null hypothesis that there is no difference in wage between men and
women at same levels of experience is

H0 : β1 = 0, β3 = 0

which can be tested by F-test

This is a version of Chow test for equality of regression functions
across two groups. We test joint significance of dummy variable
defining groups as well as interaction terms
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Chow test

In general k variable case, we can define dummy variable w indicating
two groups. Then

y = β0 + β1x1 + β2x2 + . . .+ βkxk

+δ0w + δ1w · x1 + δ2w · x2 + . . .+ δkw · xk + u

H0 : δ0 = 0, δ1 = 0, δ2 = 0, . . . , δk = 0

for k + 1 restrictions

Do F test for k + 1 exclusion restrictions

Chow test statistic often strongly rejects because of δ0 6= 0. So it is
often of interest to allow δ0 6= 0 and just test equality of the slopes
(by F test)

HS
0 : δ1 = 0, δ2 = 0, . . . , δk = 0
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